VLAN技术详解
1.VLAN的概念
1.1什么是VLAN
VLAN(Virtual Local Area Network)又称虚拟局域网,是指在交换局域网的基础上,采用网络管理软件构建的可跨越不同网段、不同网络的端到端的逻辑网络。一个VLAN组成一个逻辑子网,即一个逻辑广播域,它可以覆盖多个网络设备,允许处于不同地理位置的网络用户加入到一个逻辑子网中。VLAN是一种比较新的技术,工作在OSI参考模型的第2层和第3层,VLAN之间的通信是通过第3层的路由器来完成的。 在此让我们先复习一下广播域的概念。广播域,指的是广播帧(目标MAC地址全部为1)所能传递到的范围,亦即能够直接通信的范围。严格地说,并不仅仅是广播帧,多播帧(Multicast Frame)和目标不明的单播帧(Unknown Unicast Frame)也能在同一个广播域中畅行无阻。
本来,二层交换机只能构建单一的广播域,不过使用VLAN功能后,它能够将网络分割成多个广播域。
那么,为什么需要分割广播域呢?那是因为,如果仅有一个广播域,有可能会影响到网络整体的传输性能。具体原因,请参看附图加深理解。
A B
图中,是一个由5台二层交换机(交换机1~5)连接了大量客户机构成的网络。假设这时,计算机A需要与计算机B通信。在基于以太网的通信中,必须在数据帧中指定目标MAC
地址才能正常通信,因此计算机A必须先广播“ARP请求(ARP Request)信息”,来尝试获取计算机B的MAC地址。 交换机1收到广播帧(ARP请求)后,会将它转发给除接收端口外的其他所有端口,也就是Flooding了。接着,交换机2收到广播帧后也会Flooding。交换机3、4、5也还会Flooding。最终ARP请求会被转发到同一网络中的所有客户机上。
请大家注意一下,这个ARP请求原本是为了获得计算机B的MAC地址而发出的。也就是说:只要计算机B能收到就万事大吉了。可是事实上,数据帧却传遍整个网络,导致所有的计算机都收到了它。如此一来,一方面广播信息消耗了网络整体的带宽,另一方面,收到广播信息的计算机还要消耗一部分CPU时间来对它进行处理。造成了网络带宽和CPU运算能力的大量无谓消耗。
广播信息是那么经常发出的吗?
读到这里,您也许会问:广播信息真是那么频繁出现的吗?
答案是:是的!实际上广播帧会非常频繁地出现。利用TCP/IP协议栈通信时,除了前面出现的ARP外,还有可能需要发出DHCP、RIP等很多其他类型的广播信息。
ARP广播,是在需要与其他主机通信时发出的。当客户机请求DHCP服务器分配IP地址时 ,就必须发出DHCP的广播。而使用RIP作为路由协议时,每隔30秒路由器都会对邻近的其他路由器广播一次路由信息。RIP以外的其他路由协议使用多播传输路由信息,这也会被交换机转发(Flooding)。除了TCP/IP以外,NetBEUI、IPX和Apple Talk等协议也经常需要用到广播。例如在Windows下双击打开“网络计算机”时就会发出广播(多播)信息。(Windows XP除外……)
总之,广播就在我们身边。下面是一些常见的广播通信: ●?ARP请求:建立IP地址和MAC地址的映射关系。 ●?RIP:选路信息协议(Routing Infromation Protocol)。 ●??DHCP:用于自动设定IP地址的协议。 ●??NetBEUI:Windows下使用的网络协议。 ●??IPX:Novell Netware使用的网络协议。
●?Apple Talk:苹果公司的Macintosh计算机使用的网络协议。
1.2 VLAN的实现机制
在理解了“为什么需要VLAN”之后,接下来让我们来了解一下交换机是如何使用VLAN分割广播域的。 首先,在一台未设置任何VLAN的二层交换机上,任何广播帧都会被转发给除接收端口外的所有其他端口(Flooding)。例如,计算机A发送广播信息后,会被转发给端口2、3、4。
这时,如果在交换机上生成红、蓝两个VLAN;同时设置端口1、2属于红色VLAN、端口3、4属于蓝色VLAN。再从A发出广播帧的话,交换机就只会把它转发给同属于一个VLAN的其他端口——也就是同属于红色VLAN的端口2,不会再转发给属于蓝色VLAN的端口。 同样,C发送广播信息时,只会被转发给其他属于蓝色VLAN的端口,不会被转发给属于红色VLAN的端口。
就这样,VLAN通过限制广播帧转发的范围分割了广播域。上图中为了便于说明,以红、蓝两色识别不同的VLAN,在实际使用中则是用“VLAN ID”来区分的。
如果要更为直观地描述VLAN的话,我们可以把它理解为将一台交换机在逻辑上分割成了数台交换机。在一台交换机上生成红、蓝两个VLAN,也可以看作是将一台交换机换做一红一蓝两台虚拟的交换机。
在红、蓝两个VLAN之外生成新的VLAN时,可以想象成又添加了新的交换机。 但是,VLAN生成的逻辑上的交换机是互不相通的。因此,在交换机上设置VLAN后,如果未做其他处理,VLAN间是无法通信的。 明明接在同一台交换机上,但却偏偏无法通信——这个事实也许让人难以接受。但它既是VLAN方便易用的特征,又是使VLAN令人难以理解的原因。
需要VLAN间通信时怎么办呢?
那么,当我们需要在不同的VLAN间通信时又该如何是好呢?
请大家再次回忆一下:VLAN是广播域。而通常两个广播域之间由路由器连接,广播域之间来往的数据包都是由路由器中继的。因此,VLAN间的通信也需要路由器提供中继服务,这被称作“VLAN间路由”。
VLAN间路由,可以使用普通的路由器,也可以使用三层交换机。其中的具体内容,等有机会再细说吧。在这里希望大家先记住不同VLAN间互相通信时需要用到路由功能。
1.3 VLAN的划分方法
VLAN的划分可以是事先固定的、也可以是根据所连的计算机而动态改变设定。前者被称为“静态VLAN”、后者自然就是“动态VLAN”了。
1.3.1 静态VLAN
静态VLAN又被称为基于端口的VLAN(Port Based VLAN)。顾名思义,就是明确指定
各端口属于哪个VLAN的设定方法。
由于需要一个个端口地指定,因此当网络中的计算机数目超过一定数字(比如数百台)后,设定操作就会变得烦杂无比。并且,客户机每次变更所连端口,都必须同时更改该端口所属VLAN的设定——这显然不适合那些需要频繁改变拓补结构的网络。我们现在所实现的VLAN配置都是基于端口的配置,因为我们只是支持二层交换,端口数目有限一般为4和8个端口,并且只是对于一台交换机的配置,手动配置换算较为方便。
1.3.2 动态VLAN
另一方面,动态VLAN则是根据每个端口所连的计算机,随时改变端口所属的VLAN。这就可以避免上述的更改设定之类的操作。动态VLAN可以大致分为3类: ",● 基于MAC地址的VLAN(MAC Based VLAN) ",● 基于子网的VLAN(Subnet Based VLAN) ",● 基于用户的VLAN(User Based VLAN)
其间的差异,主要在于根据OSI参照模型哪一层的信息决定端口所属的VLAN。 基于MAC地址的VLAN,就是通过查询并记录端口所连计算机上网卡的MAC地址来决定端口的所属。假定有一个MAC地址“A”被交换机设定为属于VLAN“10”,那么不论MAC地址为“A”的这台计算机连在交换机哪个端口,该端口都会被划分到VLAN10中去。计算机连在端口1时,端口1属于VLAN10;而计算机连在端口2时,则是端口2属于VLAN10。
由于是基于MAC地址决定所属VLAN的,因此可以理解为这是一种在OSI的第二层设定访问链接的办法。
但是,基于MAC地址的VLAN,在设定时必须调查所连接的所有计算机的MAC地址并加以登录。而且如果计算机交换了网卡,还是需要更改设定。