2024年春九年级数学下册
(1)在乙组学生成绩统计图中,8分所在的扇形的圆心角为 度; (2)请补充完整下面的成绩统计分析表:
甲组 乙组 平均分 7 方差 1.8 众数 7 中位数 7 优秀率 20% 10% (3)甲组学生说他们的优秀率高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出两条支持乙组学生观点的理由.
23.如图,在平面直角坐标系xOy中,直线y=﹣x+b与x轴相交于点A,与y轴相交于点B,抛物线y=ax2﹣4ax+4经过点A和点B,并与x轴相交于另一点C,对称轴与x轴相交于点 D. (1)求抛物线的表达式; (2)求证:△BOD∽△AOB;
(3)如果点P在线段AB上,且∠BCP=∠DBO,求点P的坐标.
中考加油!
2024年春九年级数学下册
2024年北京市大兴区中考数学一模试卷
参考答案与试题解析
一.选择题(共10小题,满分30分,每小题3分)
1.【分析】根据合并同类项法则、同底数幂相除、同底数幂相乘及幂的乘方 【解答】解:A、a3+a3=2a3,此选项错误; B、a6÷a﹣3=a9,此选项错误; C、a3?a2=a5,此选项错误;
D、(﹣2a2)3=﹣8a6,此选项正确; 故选:D.
【点评】本题主要考查幂的运算,解题的关键是掌握合并同类项法则、同底数幂相除、同底数幂相乘及幂的乘方的运算法则.
2.【分析】方程组利用加减消元法求出解即可; 【解答】解:
,
①×3﹣②得:5y=﹣5,即y=﹣1, 将y=﹣1代入①得:x=2, 则方程组的解为故选:D.
【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.
3.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可
【解答】解:由x﹣1≥0,得x≥1, 由4﹣2x>0,得x<2, 不等式组的解集是1≤x<2, 故选:D.
【点评】考查了解一元一次不等式组,在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
中考加油!
;
2024年春九年级数学下册
4.【分析】根据图象知道:在通话170分钟收费一样,在通话120时A收费30元,B收费50元,其中A超过120分钟后每分钟加收0.4元,B超过200分钟加收每分钟0.4元,由此即可确定有几个正确.
【解答】解:依题意得
A:(1)当0≤x≤120,yA=30,
(2)当x>120,yA=30+(x﹣120)×[(50﹣30)÷(170﹣120)]=0.4x﹣18; B:(1)当0≤x<200,yB=50,
当x>200,yB=50+[(70﹣50)÷(250﹣200)](x﹣200)=0.4x﹣30, 所以当x≤120时,A方案比B方案便宜20元,故(1)正确; 当x≥200时,B方案比A方案便宜12元,故(2)正确; 当y=60时,A:60=0.4x﹣18,∴x=195, B:60=0.4x﹣30,∴x=225,故(3)正确;
当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10元, 将yA=40或60代入,得x=145分或195分,故(4)错误; 故选:C.
【点评】此题主要考查了函数图象和性质,解题的关键是从图象中找出隐含的信息解决问题. 5.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题. 【解答】解:在Rt△ABC中,AB=在Rt△ACD中,AD=∴AB:AD=故选:B.
【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
6.【分析】连接OD、BD,根据点C为OB的中点可得∠CDO=30°,继而可得△BDO为等边三角形,求出扇形BOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S即可求出阴影部分的面积. 【解答】解:如图,连接OD,BD, ∵点C为OB的中点,
空白BDC
,
, =
,
:
中考加油!
2024年春九年级数学下册
∴OC=OB=OD, ∵CD⊥OB,
∴∠CDO=30°,∠DOC=60°,
∴△BDO为等边三角形,OD=OB=12,OC=CB=6, ∴CD=,6∴S扇形BOD=
,
=24π,
∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形BOD﹣S△COD ==18
+6π.
+6π.
﹣
﹣(24π﹣×6×6
)
或S阴=S扇形OAD+S△ODC﹣S扇形OEC=18故选:C.
【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=7.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
【解答】解:由于得到的图形的中间是正方形,那么它的四分之一为等腰直角三角形. 故选:D.
【点评】本题主要考查剪纸问题,关键是培养学生的空间想象能力和动手操作能力. 8.【分析】结合统计图的数据,正确的分析求解即可得出答案. 【解答】解:样本容量是50÷25%=200,故B正确, 样本中C等所占百分比是
=10%,故C正确,
.
估计全校学生成绩为A等大约有1500×60%=900人,故D正确,
D等所在扇形的圆心角为360°×(1﹣60%﹣25%﹣10%)=18°,故A不正确. 故选:A.
【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接
中考加油!
2024年春九年级数学下册
反映部分占总体的百分比大小.
9.【分析】由标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,利用概率公式计算可得.
【解答】解:∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是故选:C.
【点评】本题主要考查概率公式的应用,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.
10.【分析】折叠后长方形的长为原来长的一半,减去4后即为得到等腰三角形底边长的一半;利用勾股定理即可求得等腰三角形的斜边长,周长=底边长+2腰长. 【解答】解:展开后等腰三角形的底边长为2×(10÷2﹣4)=2; 腰长=
=
,
,故选B. ,
所以展开后三角形的周长是2+2
【点评】解决本题的难点是利用折叠的性质得到等腰三角形的底边长. 二.填空题(共6小题,满分18分,每小题3分)
11.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0. 【解答】解:由分子x2﹣4=0?x=±2; 而x=2时,分母x+2=2+2=4≠0, x=﹣2时分母x+2=0,分式没有意义. 所以x=2. 故答案为:2.
【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义. 12.【分析】先由根与系数的关系求出m?n及m+n的值,再把即可.
【解答】解:∵m、n是一元二次方程x2+4x﹣1=0的两实数根, ∴m+n=﹣4,m?n=﹣1, ∴
=
=
=4.
化为
的形式代入进行计算
故答案为4.
中考加油!