菁优网
www.jyeoo.com 2=x(x﹣4x﹣12) =x(x+2)(x﹣6). 故答案为:x(x+2)(x﹣6). 点评: 此题考查了提公因式法、十字相乘法分解因式的知识.此题比较简单,注意因式分解的步骤:先提公因式,再利用其它方法分解,注意分解要彻底. 14.(4分)(2012?攀枝花)若分式方程: 考点: 分式方程的增根. 专题: 计算题. 分析: 把k当作已知数求出x=有增根,则k= 1或2 .
,根据分式方程有增根得出x﹣2=0,2﹣x=0,求出x=2,得出方程=2,求出k的值即可. 解答: 解:∵, 去分母得:2(x﹣2)+1﹣kx=﹣1, 整理得:(2﹣k)x=2, 当2﹣k=0时,此方程无解, ∵分式方程有增根, ∴x﹣2=0,2﹣x=0, 解得:x=2, 把x=2代入(2﹣k)x=2得:k=1. 故答案为:1或2. 点评: 本题考查了对分式方程的增根的理解和运用,把分式方程变成整式方程后,求出整式方程的解,若代入分式方程的分母恰好等于0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目. 15.(4分)(2011?昭通)如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是 ∠A=∠F或AC∥EF或BC=DE(答案不唯一) .(只需填一个即可)
考点: 全等三角形的判定. 专题: 开放型. 分析: 要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件). 解答: 解:增加一个条件:∠A=∠F, 显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一). 故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一). 点评: 本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取. 16.(4分)(2012?白银)如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A= 50 度.
?2010-2013 菁优网
菁优网
www.jyeoo.com
考点: 三角形的外角性质;等腰三角形的性质. 分析: 根据等角对等边的性质可得∠A=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 解答: 解:∵AC=BC, ∴∠A=∠B, ∵∠A+∠B=∠ACE, ∴∠A=∠ACE=×100°=50°. 故答案为:50. 点评: 本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边对等角的性质,是基础题,熟记性质并准确识图是解题的关键. 17.(4分)(2012?佛山)如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 2m+4 .
考点: 平方差公式的几何背景. 分析: 根据拼成的矩形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解. 解答: 解:设拼成的矩形的另一边长为x, 则4x=(m+4)﹣m=(m+4+m)(m+4﹣m), 解得x=2m+4. 故答案为:2m+4. 点评: 本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键. 三.解答题(共7小题,满分64分)
18.(6分)先化简,再求值:5(3ab﹣ab)﹣3(ab+5ab),其中a=,b=﹣.
考点: 整式的加减—化简求值. 分析: 首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变. 解答: 解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2, 222222
当a=,b=﹣时,原式=﹣8××=﹣. 点评: 熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值. ?2010-2013 菁优网
菁优网
www.jyeoo.com 19.(6分)(2009?漳州)给出三个多项式:x+2x﹣1,x+4x+1,x﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解. 考点: 提公因式法与公式法的综合运用;整式的加减. 专题: 开放型. 分析: 本题考查整式的加法运算,找出同类项,然后只要合并同类项就可以了. 解答: 222解:情况一:x+2x﹣1+x+4x+1=x+6x=x(x+6). 222
情况二:x+2x﹣1+x﹣2x=x﹣1=(x+1)(x﹣1). 情况三:x+4x+1+x﹣2x=x+2x+1=(x+1). 点评: 本题考查了提公因式法,公式法分解因式,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点. 2222熟记公式结构是分解因式的关键.平方差公式:a﹣b=(a+b)(a﹣b);完全平方公式:a±2ab+b=(a±b)2. 20.(8分)(2012?咸宁)解方程: 考点: 解分式方程. 分析: 观察可得最简公分母是(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答: 解:原方程即:.(1分) 2222222.
方程两边同时乘以(x+2)(x﹣2), 得x(x+2)﹣(x+2)(x﹣2)=8.(4分) 化简,得 2x+4=8. 解得:x=2.(7分) 检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解, 则原分式方程无解.(8分) 点评: 此题考查了分式方程的求解方法.此题比较简单,注意转化思想的应用,注意解分式方程一定要验根. 21.(10分)已知:如图,△ABC和△DBE均为等腰直角三角形. (1)求证:AD=CE;
(2)求证:AD和CE垂直.
?2010-2013 菁优网
菁优网
www.jyeoo.com 考点: 等腰直角三角形;全等三角形的性质;全等三角形的判定. 分析: (1)要证AD=CE,只需证明△ABD≌△CBE,由于△ABC和△DBE均为等腰直角三角形,所以易证得结论. (2)延长AD,根据(1)的结论,易证∠AFC=∠ABC=90°,所以AD⊥CE. 解答: 解:(1)∵△ABC和△DBE均为等腰直角三角形, ∴AB=BC,BD=BE,∠ABC=∠DBE=90°, ∴∠ABC﹣∠DBC=∠DBE﹣∠DBC, 即∠ABD=∠CBE, ∴△ABD≌△CBE, ∴AD=CE. (2)垂直.延长AD分别交BC和CE于G和F, ∵△ABD≌△CBE, ∴∠BAD=∠BCE, ∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°, 又∵∠BGA=∠CGF, ∴∠AFC=∠ABC=90°, ∴AD⊥CE. 点评: 利用等腰三角形的性质,可以证得线段和角相等,为证明全等和相似奠定基础,从而进行进一步的证明. 22.(10分)(2012?武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.
考点: 全等三角形的判定与性质. 专题: 证明题. 分析: 求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案. 解答: 证明:∵∠DCA=∠ECB, ∴∠DCA+∠ACE=∠BCE+∠ACE, ∴∠DCE=∠ACB, ∵在△DCE和△ACB中 , ?2010-2013 菁优网
菁优网
www.jyeoo.com ∴△DCE≌△ACB, ∴DE=AB. 点评: 本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中. 23.(12分)(2012?百色)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天. (1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少? 考点: 分式方程的应用. 专题: 应用题. 分析: (1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可. (2)先计算甲、乙合作需要的时间,然后计算费用即可. 解答: 解:(1)设这项工程的规定时间是x天, 根据题意得:(+)×15+=1. 解得:x=30. 经检验x=30是方程的解. 答:这项工程的规定时间是30天. (2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天), 则该工程施工费用是:18×(6500+3500)=180000(元). 答:该工程的费用为180000元. 点评: 本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答. 24.(12分)(2012?凉山州)在学习轴对称的时候,老师让同学们思考课本中的探究题. 如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?
你可以在l上找几个点试一试,能发现什么规律?
聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的: ①作点B关于直线l的对称点B′.
②连接AB′交直线l于点P,则点P为所求.
?2010-2013 菁优网