好文档 - 专业文书写作范文服务资料分享网站

高中数学知识点总结及公式大全

天下 分享 时间: 加入收藏 我要投稿 点赞

中国特级教师高考复习方法指导〈数学复习版〉

44.常见三角不等式 (1)若x?(0,(2) 若x?(0,?2),则sinx?x?tanx.

?2(3) |sinx|?|cosx|?1.

),则1?sinx?cosx?2. 45.同角三角函数的基本关系式

sin2??cos2??1,tan?=

46.正弦、余弦的诱导公式

sin?,tan??cot??1. cos?(n为偶数) (n为奇数) (n为偶数) (n为奇数) n?n??(?1)2sin?,sin(??)?? n?12?(?1)2cos?,?

n?)co?s,n??(?12 cos(??)??n?12?(?1)2si?n,?47.和角与差角公式

sin(???)?sin?cos??cos?sin?;

cos(???)?cos?cos?sin?sin?;

tan??tan?tan(???)?.

1tan?tan?sin(???)sin(???)?sin2??sin2?(平方正弦公式); cos(???)cos(???)?cos2??sin2?.

asin??bcos?=a2?b2sin(???)(辅助角?所在象限由点(a,b)的象限决

b定,tan?? ).

a48.二倍角公式

sin2??sin?cos?.

cos2??cos2??sin2??2cos2??1?1?2sin2?.

2tan?. tan2??21?tan?49. 三倍角公式

sin3??3sin??4sin3??4sin?sin(??)sin(??).

33cos3??4cos3??3cos??4cos?cos(??)cos(??)333tan??tan3???tan3???tan?tan(??)tan(??). 21?3tan?3350.三角函数的周期公式

函数y?sin(?x??),x∈R及函数y?cos(?x??),x∈R(A,ω,?为常数,且A≠0,

????.

中国教育开发网

中国特级教师高考复习方法指导〈数学复习版〉

ω>0)的周期T?2??;函数y?tan(?x??),x?k???2,k?Z(A,ω,?为常数,且A

≠0,ω>0)的周期T?51.正弦定理

?. ?abc???2R. sinAsinBsinC52.余弦定理

a2?b2?c2?2bccosA; b2?c2?a2?2cacosB; c2?a2?b2?2abcosC.

53.面积定理

111aha?bhb?chc(ha、hb、hc分别表示a、b、c边上的高). 222111(2)S?absinC?bcsinA?casinB.

2221(3)S?OAB?(|OA|?|OB|)2?(OA?OB)2. 2(1)S?54.三角形内角和定理

在△ABC中,有A?B?C???C???(A?B)

?C?A?B???2C?2??2(A?B). 222k55. 简单的三角方程的通解

sinx?a?x?k??(?1)arcsina(k?Z,|a|?1). cosx?a?x?2k??arccosa(k?Z,|a|?1).

tanx?a?x?k??arctana(k?Z,a?R).

特别地,有

sin??sin????k??(?1)k?(k?Z).

cos??cos????2k???(k?Z).

tan??tan????k???(k?Z).

56.最简单的三角不等式及其解集

sinx?a(|a|?1)?x?(2k??arcsina,2k????arcsina),k?Z.

sinx?a(|a|?1)?x?(2k????arcsina,2k??arcsina),k?Z. cosx?a(|a|?1)?x?(2k??arccosa,2k??arccosa),k?Z.

cosx?a(|a|?1)?x?(2k??arccosa,2k??2??arccosa),k?Z.

tanx?a(a?R)?x?(k??arctana,k???2),k?Z.

tanx?a(a?R)?x?(k???2,k??arctana),k?Z.

57.实数与向量的积的运算律 设λ、μ为实数,那么

(1) 结合律:λ(μa)=(λμ)a; (2)第一分配律:(λ+μ)a=λa+μa; (3)第二分配律:λ(a+b)=λa+λb. 58.向量的数量积的运算律:

中国教育开发网

中国特级教师高考复习方法指导〈数学复习版〉

(1) a·b= b·a (交换律);

(2)(?a)·b= ?(a·b)=?a·b= a·(?b); (3)(a+b)·c= a ·c +b·c. 59.平面向量基本定理

如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.

不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示

设a=(x1,y1),b=(x2,y2),且b?0,则ab(b?0)?x1y2?x2y1?0. 53. a与b的数量积(或内积) a·b=|a||b|cosθ. 61. a·b的几何意义

数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积. 62.平面向量的坐标运算

(1)设a=(x1,y1),b=(x2,y2),则a+b=(x1?x2,y1?y2).

(2)设a=(x1,y1),b=(x2,y2),则a-b=(x1?x2,y1?y2). (3)设A(x1,y1),B(x2,y2),则AB?OB?OA?(x2?x1,y2?y1).

(4)设a=(x,y),??R,则?a=(?x,?y).

(5)设a=(x1,y1),b=(x2,y2),则a·b=(x1x2?y1y2). 63.两向量的夹角公式

cos??x1x2?y1y2x?y?x?y21212222(a=(x1,y1),b=(x2,y2)).

64.平面两点间的距离公式 dA,B=|AB|?AB?AB ?(x2?x1)2?(y2?y1)2(A(x1,y1),B(x2,y2)).

65.向量的平行与垂直

设a=(x1,y1),b=(x2,y2),且b?0,则 A||b?b=λa ?x1y2?x2y1?0. a?b(a?0)?a·b=0?x1x2?y1y2?0. 66.线段的定比分公式

设P1(x1,y1),P2(x2,y2),P(x,y)是线段P1P2的分点,?是实数,且PP1??PP2,则

x1??x2?x??OP?1??1??OP2OP? ??1??y??y2?y?1?1???1t?(). ?(1?t)OP?OP?tOP121??67.三角形的重心坐标公式

△ABC三个顶点的坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3),则△ABC的重心的坐标是G(x1?x2?x3y1?y2?y3,). 3368.点的平移公式

中国教育开发网

中国特级教师高考复习方法指导〈数学复习版〉

''???x?x?h?x?x?h''?OP?OP?PP . ???''???y?y?k?y?y?k注:图形F上的任意一点P(x,y)在平移后图形F'上的对应点为P(x,y),且PP的坐标为(h,k).

69.“按向量平移”的几个结论

(1)点P(x,y)按向量a=(h,k)平移后得到点P(x?h,y?k).

(2) 函数y?f(x)的图象C按向量a=(h,k)平移后得到图象C,则C的函数解析式为y?f(x?h)?k.

(3) 图象C按向量a=(h,k)平移后得到图象C,若C的解析式y?f(x),则C的函数解析式为y?f(x?h)?k.

(4)曲线C:f(x,y)?0按向量a=(h,k)平移后得到图象C,则C的方程为f(x?h,y?k)?0.

(5) 向量m=(x,y)按向量a=(h,k)平移后得到的向量仍然为m=(x,y). 70. 三角形五“心”向量形式的充要条件

设O为?ABC所在平面上一点,角A,B,C所对边长分别为a,b,c,则 (1)O为?ABC的外心?OA?OB?OC. (2)O为?ABC的重心?OA?OB?OC?0.

(3)O为?ABC的垂心?OA?OB?OB?OC?OC?OA. (4)O为?ABC的内心?aOA?bOB?cOC?0. (5)O为?ABC的?A的旁心?aOA?bOB?cOC. 71.常用不等式:

(1)a,b?R?a?b?2ab(当且仅当a=b时取“=”号).

22222'''''''''''a?b?ab(当且仅当a=b时取“=”号). 2333(3)a?b?c?3abc(a?0,b?0,c?0).

(2)a,b?R??(4)柯西不等式

(a2?b2)(c2?d2)?(ac?bd)2,a,b,c,d?R.

(5)a?b?a?b?a?b. 72.极值定理

已知x,y都是正数,则有

(1)若积xy是定值p,则当x?y时和x?y有最小值2p; (2)若和x?y是定值s,则当x?y时积xy有最大值推广 已知x,y?R,则有(x?y)?(x?y)?2xy (1)若积xy是定值,则当|x?y|最大时,|x?y|最大; 当|x?y|最小时,|x?y|最小.

(2)若和|x?y|是定值,则当|x?y|最大时, |xy|最小; 当|x?y|最小时, |xy|最大.

73.一元二次不等式ax?bx?c?0(或?0)(a?0,??b?4ac?0),如果a与

2212s. 422ax2?bx?c同号,则其解集在两根之外;如果a与ax2?bx?c异号,则其解集在两根之

间.简言之:同号两根之外,异号两根之间.

中国教育开发网

中国特级教师高考复习方法指导〈数学复习版〉

x1?x?x2?(x?x1)(x?x2)?0(x1?x2); x?x1,或x?x2?(x?x1)(x?x2)?0(x1?x2).

74.含有绝对值的不等式 当a> 0时,有

x?a?x2?a??a?x?a.

2x?a?x2?a2?x?a或x??a.

75.无理不等式 (1)(2)(3)?f(x)?0? . f(x)?g(x)??g(x)?0?f(x)?g(x)??f(x)?0?f(x)?0?. f(x)?g(x)??g(x)?0或?g(x)?0?f(x)?[g(x)]2???f(x)?0?. f(x)?g(x)??g(x)?0?f(x)?[g(x)]2?76.指数不等式与对数不等式 (1)当a?1时,

af(x)?ag(x)?f(x)?g(x);

?f(x)?0?logaf(x)?logag(x)??g(x)?0.

?f(x)?g(x)?(2)当0?a?1时,

af(x)?ag(x)?f(x)?g(x);

?f(x)?0?logaf(x)?logag(x)??g(x)?0

?f(x)?g(x)?77.斜率公式

k?y2?y1(P1(x1,y1)、P2(x2,y2)).

x2?x178.直线的五种方程

(1)点斜式 y?y1?k(x?x1) (直线l过点P1(x1,y1),且斜率为k). (2)斜截式 y?kx?b(b为直线l在y轴上的截距).

y?y1x?x1?(y1?y2)(P1(x1,y1)、P2(x2,y2) (x1?x2)).

y2?y1x2?x1xy(4)截距式 ??1(a、b分别为直线的横、纵截距,a、b?0)

ab(5)一般式 Ax?By?C?0(其中A、B不同时为0).

(3)两点式

79.两条直线的平行和垂直

(1)若l1:y?k1x?b1,l2:y?k2x?b2

中国教育开发网

高中数学知识点总结及公式大全

中国特级教师高考复习方法指导〈数学复习版〉44.常见三角不等式(1)若x?(0,(2)若x?(0,?2),则sinx?x?tanx.?2(3)|sinx|?|cosx|?1.),则1?sinx?cosx?2.45.同角三角函数的基本关系式sin2??cos2??1,tan?=46.正弦、余弦的诱导公式<
推荐度:
点击下载文档文档为doc格式
3f8j70gy1y17c193745x
领取福利

微信扫码领取福利

微信扫码分享