新课标第一网(www.xkb1.com)--中小学教学资源共享平台
得3b2?32b?64?0解得 b1?8,b2?P2(?4,4);
83将之代入P(3b2 -8,4)?P1?(4,4)、第二类如上解法②中所示图
此时D(-b,o),E(O,2b) ?E为直角:设直线DE:y?2x?2b,,直线PE的方程:y??(4b?8)?(4?2b)?b1?4,b2?432212x?2b,令y?4得P(4b?8,4).由已知可得PE?DE即
2222b?4b化简得b?(2b?8)解之得 ,
83,4)
将之代入P(4b-8,4)?P3?(8,4)、P4(?第三类如上解法③中所示图
此时D(-b,o),E(O,2b) ?D为直角:设直线DE:y?2x?2b,,直线PD的方程:y??8?4?222212(x?b),令y?4得P(?b?8,4).由已知可得PD?DE即
(-b-8,4)?P5?(-12,4)、 b?4b解得b1?4,b2??4将之代入PP6(?4,4)(P6(?4,4)与P2重合舍去).
综上可得P点的生标共5个解,分别为P(-12,4)、P(-4,4)、P(-P(8,4)、P(4,4).
事实上,我们可以得到更一般的结论: 如果得出AB?a、OC?b、OA?h、设k?
b?ah83,4)、
,则P点的情形如下
直角分类情形 k?1 k?1 P1(h,h) ?P为直角 P2(?h,h) P3(?hk1?khkk?1,h) P1(?h,h) ?E为直角 P4(P2(?h2,h) ,h) 新课标第一网----免费课件、教案、试题下载
新课标第一网(www.xkb1.com)--中小学教学资源共享平台
P5(?h(k?1),h) P3(0,h) P4(?2h,h) ?D为直角 P6(?h(k?1),h) 9.
10.
新课标第一网----免费课件、教案、试题下载
新课标第一网(www.xkb1.com)--中小学教学资源共享平台
11. 解:(1)设A地经杭州湾跨海大桥到宁波港的路程为x千米, 由题意得
x?120103?x2, ······························································································· 2分
解得x?180.
················································ 4分 ?A地经杭州湾跨海大桥到宁波港的路程为180千米.·
(2)1.8?180?28?2?380(元),
·························· 6分 ?该车货物从A地经杭州湾跨海大桥到宁波港的运输费用为380元. ·
(3)设这批货物有y车,
由题意得y[800?20?(y?1)]?380y?8320, ··························································· 8分 整理得y?60y?416?0,
解得y1?8,y2?52(不合题意,舍去), ································································ 9分 ···································································································10分 ?这批货物有8车. ·
12. 解:(1)2,1a,a. ····················································································· 3分 44新课标第一网----免费课件、教案、试题下载
22新课标第一网(www.xkb1.com)--中小学教学资源共享平台
(2)相等,比值为2. ················ 5分(无“相等”不扣分有“相等”,比值错给1分) (3)设DG?x,
在矩形ABCD中,?B??C??D?90?,
???HGF?90,
???DHG??CGF?90??DGH,
?△HDG∽△GCF, ?DGCF?HGGF?12,
?CF?2DG?2x. ··································································································· 6分 同理?BEF??CFG. ?EF?FG, ?△FBE≌△GCF, 4?CF?BF?BC, ?BF?CG?1a?x. ······························································································· 7分
?2x?14a?x?24····························································································· 8分 a, ·
解得x?2?142?142a.
即DG?(4)
316···································································································· 9分 a. ·
a, ··············································································································10分
27?1828a. 12分
213. 解:(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H. ……………1分 ∵ AB∥CD,
∴ DG=CH,DG∥CH.
∴ 四边形DGHC为矩形,GH=CD=1. ∵ DG=CH,AD=BC,∠AGD=∠BHC=90°, ∴ △AGD≌△BHC(HL). ∴ AG=BH=
AB?GH2?7?12D M C N =3. ………2分
∵ 在Rt△AGD中,AG=3,AD=5, ∴ DG=4. ∴ S梯形ABCD??1?7??42A E G H F B
?16. ………………………………………………3分
新课标第一网----免费课件、教案、试题下载
新课标第一网(www.xkb1.com)--中小学教学资源共享平台
(2)∵ MN∥AB,ME⊥AB,NF⊥AB, ∴ ME=NF,ME∥NF. ∴ 四边形MEFN为矩形. ∵ AB∥CD,AD=BC, ∴ ∠A=∠B.
∵ ME=NF,∠MEA=∠NFB=90°, ∴ △MEA≌△NFB(AAS).
∴ AE=BF. ……………………4分 设AE=x,则EF=7-2x. ……………5分 ∵ ∠A=∠A,∠MEA=∠DGA=90°, ∴ △MEA∽△DGA. ∴ ∴
AEAGDG4ME=x.
3?MED M C N A E G H F B
.
…………………………………………………………6分
42∴ S矩形MEFN当x=
748?7?49?ME?EF?x(7?2x)???x???33?4?6. ……………………8分
时,ME=
73<4,∴四边形MEFN面积的最大值为49.……………9分
6(3)能. ……………………………………………………………………10分 由(2)可知,设AE=x,则EF=7-2x,ME=x.
34若四边形MEFN为正方形,则ME=EF. 即
4x3?7-2x.解,得 x?2110?211014. ……………………………………………11分 <4.
196?14?????25?5?2∴ EF=7?2x?7?2?5∴ 四边形MEFN能为正方形,其面积为S正方形MEFN.
14. 解:(1)由题意可知,m?m?1???m?3??m?1?. 解,得 m=3. ………………………………3分
∴ A(3,4),B(6,2); ∴ k=4×3=12. ……………………………4分 (2)存在两种情况,如图:
①当M点在x轴的正半轴上,N点在y轴的正半轴 上时,设M1点坐标为(x1,0),N1点坐标为(0,y1).
∵ 四边形AN1M1B为平行四边形,
M2 y A N1 O B M1 x ∴ 线段N1M1可看作由线段AB向左平移3个单位, N2 再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的). 由(1)知A点坐标为(3,4),B点坐标为(6,2),
∴ N1点坐标为(0,4-2),即N1(0,2); ………………………………5分
M1点坐标为(6-3,0),即M1(3,0). ………………………………6分 设直线M1N1的函数表达式为y?k1x?2,把x=3,y=0代入,解得k1??23.
新课标第一网----免费课件、教案、试题下载