7、地球也是一个磁体,周围也存在着磁场,叫 地磁 场。所以小磁针静止时会由于同名磁极互相排斥,异名磁极互相吸引的原理指向南北,由此可知,地磁南极在地理 北极 附近,地磁北极在地理 南极 附近。
8、地磁南极与地理北极、地磁北极与地理南极并不完全重合,中间有一个夹角,叫做 磁偏角 ,是由我国宋代学者 沈括 首先发现的。 十六、电生磁
1、奥斯特实验证明:通电导线的周围存在着 磁场 ,磁场的方向跟 电流 的方向有关,这种现象叫做电流的磁效应。这一现象是由丹麦物理学家 奥斯特 在1820年发现的。
2、把导线绕在圆筒上,做成螺线管,也叫线圈,在通电情况下会产生磁场。通电螺线管的磁场相当于 条形 磁体的磁场,通电螺线管的两端相当于 条形 磁体的两个磁极。
3、通电螺线管的磁场方向与 电流 方向有关。磁场的强弱与 电流的大小、 线圈的匝数 、有无铁芯有关。
4、在通电螺线管里面加上一根铁芯,就成了一个 电磁铁 。电磁铁磁场的强弱与电流的强弱、线圈的匝数有关。可以制成电磁起重机、扬声器和吸尘器等。
5、判断通电螺线管的磁场方向可以使用安培(右手)定则:将右手的四指顺着电流方向抓住螺线管, 大拇指的指向 的方向就是该螺线管的N极。 十七、电磁继电器 扬声器
1、继电器是利用 低 电压、 弱 电流电路的通断,来间接地控制 高 电压、 大 电流电路的装置。实质上它就是利用电磁铁来控制工作电路的一种 开关 。
2、电磁继电器由电磁铁、 衔铁 、簧片、 触电 组成;其工作电路由低压 控制 电路和高压 工作 电路两部分组成。
3、扬声器是把电信号转换成 声 信号的一种装置。它主要由固定的 永磁体 、线圈和锥形纸盆构成。 十八、电动机
1、通电导体在 磁场 中会受到力的作用。它的受力方向跟 电流 方向、磁感线方向有关。 2、电动机由 定子和 转子两部分组成。能够转动的部分叫 转子;固定不动的部分叫 定子 。 3、当直流电动机的线圈转动到 平衡 位置时,线圈就不再转动,只有改变线圈中的 电流 方向,线圈才能继续转动下去。这一功能是由 换向器 实现的。换向器是由一对半圆形铁片构成的,它通过与电刷的接触,在 平衡位置 时改变电流的方向。
4、电动机构造简单、控制方便、体积小、效率高、功率可大可小,被广泛应用在日常生活和各种产业中。它在电路图中用 表示。电动机工作时是把电能转化为 动能 。 十九、磁生电
1、在1831年由英国物理学家 法拉第 首先发现了利用磁场产生电流的条件和规律。当闭合电路的 导线 在磁场中做 切割磁感线 运动时,电路中就会产生电流。这个现象叫电磁感应现象,产生的电流叫感应电流。
2、没有使用换向器的发电机,产生的电流,它的方向会周期性 改变 ,这种电流叫交变电流,简称交流电。它每秒钟电流方向改变的次数叫 频率 ,单位是 赫兹 ,简称赫,符号为Hz。我国的交流电频率是 50 Hz。
3、使用了换向器的发电机,产生的电流,它的方向 不变 ,这种电流叫直流电。(实质上和直流电动机的构造完全一样,只是直流发电机是磁生电,而直流电动机是电生磁)
4、直流电动机原理:是利用通电线圈在磁场里 受到力的作用 的原理制成的。
5、实际生活中的大型发电机由于电压很高,电流很强,一般都采用 线圈 不动, 磁极 旋转的方式来发电,而且磁场是用电磁铁代替的。 二十、电话
1、1876年由美国科学家 贝尔 发明了电话。最简单的电话由 话筒 和 听筒 组成。
11
话筒将声信号转变为 电信号 信号,听筒将音频电信号转变为 声 信号。通话双方的话筒和听筒是互相串联的,自己的话筒和听筒是互相独立的。
2、为了节约电话线路的使用效率,人们发明了电话 交换机 。
3、电话按信号输方式来分,可分为有线电话和 无线 电话;按信号类型来分,可分为模拟电话和 数字 电话。
4、模拟信号在传输过程中会丢失信息,而且抗干扰能力不强,保密性也很差,信号衰减厉害。数字信号在传输过种中,抗干扰能力 强 ,保密性 好 。 二十一、电磁波的海洋
1、导线中的电流迅速变化会在空间激起 电磁波 。电磁波在空气、水、某些固体,甚
8
至真空中都能传播。光也是电磁波的一种。电磁波的速度和光速一样,都是 3.0×10 m/s,电磁波的速度,等于波长?和频率f的乘积: c = ?f 单位分别是 m/s(米每秒)、m(米)、Hz(赫兹);频率的常用单位还有千赫(kHz)和兆赫(MHz)。
2、用于广播、电视和移动电话的电磁波是数百千赫至数百兆赫的那一部分,叫做无线电波 。 二十二、广播 电视和移动通信
1、无线电广播的发射由 广播电台 完成;接收部分主要由 接收天线 、调谐器、解调器和扬声器组成。
2、电视信号的传输与无线电广播基本相同,只是发射部分多了摄像机,接收部分多了显像管。 3、移动电话(无线电话,手机)既是无线电的 发射 装置,又是无线电的 接收 装置。它的特点是体积小,发射功率不大,天线简单,灵敏度不高,需要 基站台 转发信号。 二十三、越来越宽的信息之路
1、微波是波长在 10m ~ 1mm 之间,频率在 30MHz ~ 3 105MHz 之间的电磁波。微波大致 直线 传播,所以每隔50公里左右就要建一个 微波中继站 。
2、利用卫星做通信中继站,称之为卫星通信。这种卫星相对于地球静止不动,叫做 同步 卫星。在地球周围均匀分布 3 颗卫星,就可以实现全球通信。
3、1960年,美国科学家梅曼发明了第一台激光器。激光的特点是频率 单一 、方向高度集中。光纤通信是利用 激光 在光纤中传输信号的。光纤由中央的玻璃芯和外面的反射层、保护层构成的,可以传输大量的信息。
串联、并联电路中的电流、电压、电阻的总分关系 连结情况 电流、电压、电阻三者的总分关系 电流各处相等 串联电路 总电压等于各用电器的电压之和 总电阻等于各用电器的电阻之和 总电流等于各支路的电流之和 并联电路 电压各处相等 总电阻的倒数和等于各支路的倒数之和 表达式 12
伏安法实验:
U
1.实验原理:P=UI(测电功率);R= (测电阻)
I
2.实验器材:电源、导线、开关、电压表、电流表、滑动变阻器、灯泡(或电阻) 3.电路图:(如右图)
4.实验中滑动变阻器的作用是改变小灯泡(或电阻)两端的电压,保护电路。 实验之前应把滑动变阻器调至阻值最大处
九年级:
一、宇宙和微观世界
1.宁宙是由物质组成的
“物体”与“物质”的区别和联系: 物体 是指具有一定形状、占据一定空间,有体积和质量的实体。而 物质 则是指构成物体的材料。比如桌子这个 物体 是由木头这种 物质 组成的,窗棱这个物体是由铁这种物质组成的。
2.物质是由 分子 组成的,分子是由 原子 组成的
-10
(1)分子的大小:一般分子的大小只有百亿分之几米,通常用 10 m做单位来量度。
(2)原子的结构:原子由 原子核 和 核外带负电电子 组成,原子核由 带正电的质子 和 带负电的电子 组成。
3.固态、液态、气态的微观模型
(1)固态物质中,分子的排列十分紧密,分子间作用力 比较强 。因此,固体具有一定的体积和 形状 ,但不具有 流动 性。
(2)液体物质中,分子没有固定的位置,运动比较自由,粒子间的作用力比固体的 弱 。因此,液体没有确定的 形状 ,但有一定的 体积 ,具有 流动 性。
(3)气体物质中,分子极度散乱,间距很 大 ,并以高速度向四面八方运动,粒子间的作用力极 弱 ,容易被 压缩 。因此,气体具有很强的流动性,但没有一定的 体积 和 形状 。
4.纳米技术
-9
(1)纳米是 长度 的单位。1nm= 10 m。
(2)纳米科学技术是指纳米尺度内(0.1~100nm)的科学技术,研究对象是原子、分子。 (3)纳米技术是现代科学技术的前沿,它在电子和通信方面、医疗方面、制造业方面等都有应用。 二、质量
l.质量
(1)定义:物体中 含物质的多少 叫质量,用字母 m 表示。
(2)质量的单位:国际上通用的质量单位有千克(kg)、吨(t)、克(g)、毫克(mg),其中 K 是质量的国际单位。
(3)换算关系:1t= 1000 kg;1kg= 1000 g;1g= 1000 mg。 (4)质量是物质的一种 固有属性 ,它不随物体的形状、状态、温度和地理位置的改变而改变。 2.质量的测量:用天平
(1)构造:托盘天平由 横梁 、指针、分度盘、标尺、游码、托盘、平衡螺母构成,每架天
13
平配制一盒 砝码 。盒中每个砝码上都标明了质量大小,以“克”为单位,用符号“g”表示。
(2)使用:先将天平放 水平桌面 ;后将游码 调零 ;再调螺母 使天平平衡 ; 左盘 放物体, 右盘 放码;四点注意要记清。调整平衡后不得移动天平的位置,也不得移动 平衡螺母 ;左盘放被测物体,右盘中放砝码;物体的质量=盘中砝码总质量+游码在标尺上所对的 刻度值 (俗称游码质量)。
四点注意:被测物体的质量不能超过 天平的量程 ;向盘中加减砝码时要用 镊子 ,不能用手接触砝码,不能把砝码弄湿、弄脏;潮湿的物体和化学药品不能直接放到天平的盘中;砝码要轻拿轻放。 三、密度
1.物质的质量与体积的关系:同种物质的质量和体积成 正比 ,其比值为 密度 。 2.密度
(1)定义:单位体积某种物质的质量叫做这种物质的密度,用符号 ρ 表示。 (2)公式:ρ= m/v 。式中,ρ表示密度;m表示质量;V表示体积。
333
(3)单位:国际单位是 kg/m ,读做千克每立方米;常用单位还有:克/厘米(g/cm),
33
读做克每立方厘米。换算关系:1g/cm= 1000 kg/m。
(4)密度是物质的一种特性,它只与物质种类和 状态 有关,与物体的质量、体积无关。 (5)混合物质的密度应由其混合物质的总质量与总体积的 比值 决定。 四、测量物质的密度
1.体积的测量
3333
(1)体积的单位:m、dm(L)、cm(mL)、mm。
333333333333
(2)换算关系:1m=10dm;1dm= 10 cm;lcm=10mm;1L= 1 dm;1mL= 10mm。 (3)测量工具: 量筒 或量杯、刻度尺 (4)测量体积的方法
①对形状规则的固体:可用刻度尺测出其尺寸,求出其体积。
②对形状不规则的固体:使用量筒或量杯采用“溢水法”测体积。若固体不沉于液体中,可用“ 针压 法”——用针把固体压入量筒浸没入水中,或“ 沉锤法 法”——用金属块或石块拴住被测固体一起浸没入量筒的液体中测出其体积。
(5)量筒的使用注意事项
3
①要认清量筒、量杯的最大刻度是多少?它的每小格代表多少cm(毫升)?②测量时量筒或量杯应放平稳。③读数时,视线要 量筒最凹面相平 。
2.密度的测量 (1)原理: ρ=m/v 。
(2)方法:测出物体质量m和物体体积V,然后利用公式 ρ=m/v 计算得到ρ。 (3)密度测量的几种常见方法
①测沉于水中固体(如石块)的密度
器材:天平(含砝码) 量筒 、石块、水、细线。
步骤:用天平称出石块的质量m;倒适量的水入量筒中,记录水面的刻度V1;用细线拴住石块浸没入量筒的水中,记录此时水面的刻度V2;用表达式ρ= m/v2-v1 算出密度。
②测量不沉于水的固体(如木块)的密度
器材:天平(含砝码)、量筒、木块、铁块、水、细线。
步骤:用天平称出木块的质量m;倒适量的水入量筒中,用细线拴住铁块浸没入量筒的水中,记录水面的刻度V1;将木块取出,用细线把木块与铁块拴在一起全部没入量筒的水中,记录此时水面的刻度V2;用表达式 m/v2-v1 算出密度。
注意:在测固体的密度时,在实验的步骤安排上,都是先测物体的质量再用排液法测体积。如
14
若倒过来,则会造成固体因先沾到液体而使得质量难以准确测量。
③测量液体(如盐水)的密度
器材:天平(含砝码)、量筒、烧杯、盐水。
步骤:用天平称出烧杯和盐水的质量m1,将烧杯中的盐水倒一部分入量筒中,记录量筒中液面的读书V;用天平称出剩余盐水和烧杯的质量m2;用表达式 算出密度。 五、密度与社会生活
1.密度作为物质的一个重要属性,在科学研究和生产生活中有着广泛的应用 (1)农业
①用来判断土壤的肥力,土壤越肥沃,它的密度越 小 。
②播种前选种也用到密度,把要选的种子放在水里,饱满健壮的种子由于密度 大 而沉到水底,瘪壳和杂草种由于密度 小 而浮在水面上。
(2)工业
有些工厂用的原料往往也根据密度来判断它的优劣。 2.密度与温度:温度能改变物质的密度。
(1) 气体 的热胀冷缩最为显著,它的密度受温度的影响也最大。
(2)一般固体、液体的热胀冷缩不像 气体 那样明显,因而密度受温度的影响比较 小 。 (3)并不是所有的物质都遵循“热胀冷缩”的规律。如: 4 ℃的水密度最大。 3.密度的应用 (1)鉴别物质。
(2)计算不能直接称量的庞大物体的质量,m=ρV。 (3)计算不便于直接测量的较大物体的体积,V=m/ρ。
(4)判断物体是否是实心或空心。判断的方法通常有三种:利用 密度 进行比较;利用 体积 进行比较;利用 质量 进行比较。 六、运动的描述
1.机械运动:物理学中把 物体位置变化 叫做机械运动,简称为运动。2.参照物
(1)研究机械运动,判断一个物体是运动的还是静止的,被选作标准的物体叫做 参照物 。 (2)判断一个物体是运动的还是静止的,要看这个物体与参照物的位置关系。当一个物体相对于参照物位置发生了改变,我们就说这个物体是 运动 的,如果位置没有改变,我们就说这个物体是 静止 的。
(3)参照物的选择是任意的,选择不同的参照物来观察同一物体的运动,其结果可能 不同 。一般在研究地面上运动的物体时,常选择 地面 或者相对地面静止的物体作为参照物。
3.运动和静止的相对性:宇宙中的一切物体都在 运动 ,也就是说,运动是绝对的。而一个物体是运动还是静止则是相对于 参照物 而言的,这就是运动的相对性。
4.判断一个物体是运动的还是静止的,一般按以下三个步骤进行: (1)选择恰当的参照物。
(2)看被研究物体相对于参照物的位置 是否变化 。
(3)若被研究物体相对于参照物的位置发生了改变,我们就说这个物体是 运动 的。若位置没有改变,我们就说这个物体是 静止 的。 七、运动的快慢
1.知道比较快慢的两种方法
(1)通过相同的距离比较 时间 的大小。(2)相同时间内比较通过 路程 的多少。 2.速度
(1)物理意义:速度是描述 物体运动快慢 的物理量。 (2)定义:速度是指运动物体在单位时间内通过的 路程 。
15