. 2024年浙江专升本高数考试真题答案
一、选择题:本大题共5小题,每小题4分,共20分。
?sinx,x?0?1、设f(x)??x,则f(x)在(?1,1)内( C )
,x?0??xA、有可去间断点
x?0x?0B、连续点
x?0C、有跳跃间断点
x?0D、有第二间断点
解析:lim?f(x)?lim?x?0,lim?f(x)?lim?x?0x?0sinx?1 x?lim?f(x)?lim?f(x),但是又存在,?x?0是跳跃间断点
2、当x?0时,sinx?xcosx是x的( D )无穷小 A、低阶 解析:lim
B、等阶
C、同阶
D、高阶
2sinx?xcosxcosx?cosx?xsinxsinx?lim?lim?0?高阶无穷小 2x?0x?0x?0x2x2x?x03、设f(x)二阶可导,在x?x0处f??(x0)?0,limf(x)?0,则f(x)在x?x0处( B ) x?x0D、x0,f(x0)是拐点
A、取得极小值 解析:?limB、取得极大值 C、不是极值
??x?x0f(x)?f(x0)f(x)?0,?f?(x0)?lim,则其f?(x0)?0,f(x0)?0,
x?x0x?x0x?x0x0为驻点,又?f??(x0)?0?x?x0是极大值点。
4、已知f(x)在?a,b?上连续,则下列说法不正确的是( B ) A、已知
?baf2(x)dx?0,则在?a,b?上,f(x)?0
d2xB、f(t)dt?f(2x)?f(x),其中x,2x??a,b?
dx?xC、f(a)?f(b)?0,则?a,b?内有?使得f(?)?0
D、y?f(x)在?a,b?上有最大值M和最小值m,则m(b?a)?解析:A.由定积分几何意义可知,f(x)?0,的面积,该面积为
0?2?baf(x)dx?M(b?a)
?baf2(x)dx为f2(x)在?a,b?上与x轴围成
f2(x)?0,事实上若
f(x)满足
1 / 9
. ?连续?非负?f(x)?0(a?x?b) ??bf(x)dx?0??ad2xB. f(x)dx?2f(2x)?f(x) ?xdxC. 有零点定理知结论正确
D. 由积分估值定理可知,x??a,b?,m?f(x)?M, 则
?bamdx??f(x)dx??Mdx?m(b?a)??f(x)dx?M(b?a)
aaabbb5、下列级数绝对收敛的是( C )
???cosn(?1)n?1(?1)n?11A、? B、? C、? D、?
n?1n?1n?1n?1ln(n?1)n?1nn3?9?解析:A.limn??1?11n?1?1,由
?发散发散 ?1nn?1n?1n1??11ln(1?n)1nB. lim发散 ?lim?lim?0,由?发散??n??n??n??1?n1nln(1?n)nn?1n?1ln(1?n)1C.
cosnn?92?1n?92,而limn???1cosn1n2?9=1,
由?3收敛?收敛?221n?12n?9n?9n3n2收敛 D.
1发散 ?nn?11x?二、填空题
6、lim(1?asinx)?e
x?01x1ln(1?asinx)xln(1?asinx)limx?0x1?acosxlim1?asinxx?01a解析:lim(1?asinx)?limex?0x?0?e?e?ea
7、limx?03f(3)?f(3?2x)?3,则f?(3)?
2sinxx?0解析:limf(3)?f(3?2x)f(3?2x)?f(3)?2lim?2f?(3)?3
x?0sinx?2x2 / 9
. sinx(cosx?b)?5,则b??9
x?0e2x?asinxx(cosx?b)解析:lim2x(cosx?b)?lim?5 2xx?0ex?0?ae?a8、若常数a,b使得lim所以根据洛必达法则可知:1?a?0,a?1
x(cosx?b)cosx?b1?b ?lim?x?0x?02x221?b?5,b??9 2lim9、设??x?ln(1?t)dy,则
dx?y?t?arctantdy?dtdxdxdtdy1?t?1?1
解析:
121?t2?t(1?t),dy1dx1?t21?t2t?1?1
d2yy2?x210、y?f(x)是x?y?1?0所确定的隐函数,则2? 3dxy2解析:方程两边同时求导,得:2x?2yy??0,y??x, yx带入, y方程2x?2yy??0同时求导,得:1?(y?)?yy???0,将y??2d2y1x2y2?x2x2则得,1?()?yy???0,2?y????3?
dxyyy3y11、求y?x的单增区间是(?1,1) 21?x1?x2?2x21?x2?解析:y??
(1?x2)2(1?x2)2令y??0,则x?1,?1?x?1
212、求已知
?1kf(x)dx?e?C,则lim??f()? e?1
n??nk?0nx2n?1111kx21lim?f()?f(x)dx?f(x)dx?(e?C)解析:?0?e?1 ??00n??nk?0nn?113、
???e1dx?1
x(lnx)23 / 9
. 解析:
???e??111dx?dlnx???e(lnx)2x(lnx)2lnx??e?1
14、由y?x:y?1,x?2围成的图形面积为
24 3解析:A??21142(x2?1)dx?(x3?x)1?
3315、常系数齐次线性微分方程y???2y??y?0的通解为y?(C1?C2x)ex(C1C2为任意常数)
解析:特征方程:r?2r?1?0,特征根:r1?r2?1 通解为y?(C1?C2x)e(C1C2为任意常数)
三、计算题 (本大题共8小题,其中16-19小题每小题7分,20-23小题每小题8分,共
60分)
x2ex?e?x16、求lim
x?0ln(1?sinx)ex?e?xe2x?12x2x?x?lime?lim?lim?2 解析:limx?0ln(1?sinx)x?0ln(1?sinx)x?0sinxx?0x17、设y(x)?(1?sinx),求y(x)在x??处的微分
xy(x)?(1?sinx)解析: xlny?xln(1?sinx) 1cosxy??ln(1?sinx)?xy1?sinx dy?[ln(1?sinx)?xcosx](1?sinx)xdx 1?sinx将x??代入上式,得微分dy???dx 18、求解析:
??5?05?1?cos2xdx
1?cos2xdx??|sinx|dx02?3?5π0??sinxdx??(?sinx)dx??sinxdx??(?sinx)dx??sinxdx0π
4?5??2?3?4?
2?3?4?5???cosx|?0?cosx|??cosx|2??cosx|3??cosx|4??10
4 / 9
. 19、求arctanxdx
2令x?t,则x?t解析:,dx?2tdt?
222arctantdt?tarctant?t??darctant?t2arctant??t221dt1?t2
1?t2?1?tarctant??dt1?t2
?t2arctant??(1?1)dt21?t
?t2arctant?t?arctant?c则原式?xarctanx?x?arctanx?c
20、(-1?1xxcosx?)dx 45?4x1?x解析:?xcosx1?x4为奇函数,
?该式不代入计算 5?t2令t?5?4x,则x?4
1dx??tdt
25?t211该式??(?t)dt
34t2113??(5?t2)dt 811113?(5t?t3)|1?
36 821、已知f(x)??解析:
?2x?b,x?0在x?0处可导,求a,b
?ln(1?ax),x?0
5 / 9