2012年河师大考研群河师大考研QQ群:27619690,欢迎加入我们
(A)u?
2
(B)u1??2
试问a取何值时,该方程组有非零解,并求出其通解.
(21)(本题满分9分)
(C)u1??
2(D) u1??
1n(14)设随机变量X1,X2,?,Xn(n?1)独立同分布,且其方差为??0. 令Y??Xi,则
ni?12?12?3???设矩阵A??14?3的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化. ????1a5??(22)(本题满分9分)
设A,B为随机事件,且P(A)?(A)Cov(X1,Y)??2n
(B)Cov(X1,Y)??2
111,P(B|A)?,P(A|B)?,令 432n?22? (C)D(X1?Y)?n
n?12? (D)D(X1?Y)?n?1,A发生,?1,B发生, Y?? X??0,0,A不发生;B不发生.??求:(1)二维随机变量(X,Y)的概率分布. (2)X和Y的相关系数?XY.
(23)(本题满分9分)
设总体X的分布函数为
三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分12分)
4222设e?a?b?e,证明lnb?lna?2(b?a).
e(16)(本题满分11分)
某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.
现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k?6.0?106). 问从着陆点算起,飞机滑行的最长距离是多少?
(注:kg表示千克,km/h表示千米/小时) (17)(本题满分12分) 计算曲面积分I?1??1??,x?1,F(x,?)??x
x?1,??0,其中未知参数??1,X1,X2,?,Xn为来自总体X的简单随机样本,
求:(1)?的矩估计量. (2)?的最大似然估计量.
??2xdydz?2ydzdx?3(z?332?1)dxdy,其中?是曲面z?1?x?y(z?0)的上侧.
22(18)(本题满分11分)
设有方程x?nx?1?0,其中n为正整数.证明此方程存在惟一正实根xn,并证明当??1时,级数
n?x?nn?1?收敛.
(19)(本题满分12分)
设z?z(x,y)是由x2?6xy?10y2?2yz?z2?18?0确定的函数,求z?z(x,y)的极值点和极值. (20)(本题满分9分) 设有齐次线性方程组
?(1?a)x1?x2???xn?0,?2x?(2?a)x???2x?0,?12n??????????nx1?nx2???(n?a)xn?0,(n?2),
考研英语作文模板
2012年河师大考研群河师大考研QQ群:27619690,欢迎加入我们
(9)设函数u(x,y)??(x?y)??(x?y)?必有
2005年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)
?x?yx?y?(t)dt, 其中函数?具有二阶导数,? 具有一阶导数,则
?2u?2u(A)2??2
?x?y?2u?2u(C)?2
?x?y?y
?2u?2u(B)2?
?x?y2?2u?2u(D)?2
?x?y?x
x2(1)曲线y?的斜渐近线方程为 _____________.
2x?1(2)微分方程xy??2y?xlnx满足y(1)??
1的解为____________. 9程
(1,2,3)(10)设有三元方程xy?zlny?exz?1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方
?1x2y2z2?u??{1,1,1},则(3)设函数u(x,y,z)?1?,单位向量n??n612183(4)设?是由锥面z?侧,则
=.________.
(A)只能确定一个具有连续偏导数的隐函数z?z(x,y)
(B)可确定两个具有连续偏导数的隐函数x?x(y,z)和z?z(x,y) (C)可确定两个具有连续偏导数的隐函数y?y(x,z)和z?z(x,y) (D)可确定两个具有连续偏导数的隐函数x?x(y,z)和y?y(x,z)
(11)设?1,?2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1?α2)线性无关的充分必要条件是
(A)?1?0 (C)?1?0
(B)?2?0 (D)?2?0
x2?y2与半球面z?R2?x2?y2围成的空间区域,?是?的整个边界的外
??xdydz?ydzdx?zdxdy?____________.
?(5)设α1,α2,α3均为3维列向量,记矩阵
A?(α1,α2,α3),B?(α1?α2?α3,α1?2α2?4α3,α1?3α2?9α3),
如果A?1,那么B? .
(6)从数1,2,3,4中任取一个数,记为X, 再从1,2,?,X中任取一个数,记为Y, 则
P{Y?2}=____________.
二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)
(7)设函数f(x)?limn1?xn??3n(12)设A为n(n?2)阶可逆矩阵,交换A的第1行与第2行得矩阵B.A*,B*分别为A,B的伴随矩阵,则 (A)交换A的第1列与第2列得B (C)交换A的第1列与第2列得?B (13)设二维随机变量(X,Y)的概率分布为
X Y 0 0.4 1 a 0.1 ****(B)交换A的第1行与第2行得B
(D)交换A的第1行与第2行得?B
****,则f(x)在(??,??)内
(B)恰有一个不可导点 (D)至少有三个不可导点
(A)处处可导 (C)恰有两个不可导点
(8)设F(x)是连续函数f(x)的一个原函数,\M?N\表示\M的充分必要条件是N\则必有 (A)F(x)是偶函数?f(x)是奇函数 (C)F(x)是周期函数?f(x)是周期函数
(B)F(x)是奇函数?f(x)是偶函数
(D)F(x)是单调函数?f(x)是单调函数
0 1 已知随机事件{X?0}与{X?Y?1}相互独立,则
(A)a?0.2,b?0.3
b (B)a?0.4,b?0.1
考研英语作文模板
2012年河师大考研群河师大考研QQ群:27619690,欢迎加入我们
?(y)dx?2xydy2x2?y4(C)a?0.3,b?0.2 (D)a?0.1,b?0.4
(1)证明:对右半平面x?0内的任意分段光滑简单闭曲线C,有(2)求函数?(y)的表达式. (20)(本题满分9分)
??C?0.
(14)设X1,X2,?,Xn(n?2)为来自总体N(0,1)的简单随机样本,X为样本均值,S2为样本方差,则 (A)nX~N(0,1)
(B)nS2~?2(n) (D)
(n?1)X~t(n?1) (C)
S
(n?1)X12?Xi?2n~F(1,n?1)
222已知二次型f(x1,x2,x3)?(1?a)x1?(1?a)x2?2x3?2(1?a)x1x2的秩为2.
2i(1)求a的值;
(2)求正交变换x?Qy,把f(x1,x2,x3)化成标准形. (3)求方程f(x1,x2,x3)=0的解. (21)(本题满分9分)
三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分) 设D?{(x,y)x?y?重积分
222,x?0,y?0},[1?x2?y2]表示不超过1?x2?y2的最大整数. 计算二
??xy[1?xD?2?y2]dxdy.
(16)(本题满分12分) 求幂级数
?123???已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B?246(k为常数),且AB?O,求线????36k??性方程组Ax?0的通解.
(22)(本题满分9分)
设二维随机变量(X,Y)的概率密度为
?(?1)n?1n?11(1?)x2n的收敛区间与和函数f(x).
n(2n?1)(17)(本题满分11分)
如图,曲线C的方程为y?f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分
f(x,y)? 求:(1)(X,Y)的边缘概率密度fX(x),fY(y).
10?x?1,0?y?2x 0其它?(x032?x)f???(x)dx.
(2)Z?2X?Y的概率密度fZ(z).
(23)(本题满分9分)
设X1,X2,?,Xn(n?2)为来自总体N(0,1)的简单随机样本,X为样本均值,记
(18)(本题满分12分)
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)?0,f(1)?1. 证明: (1)存在??(0,1), 使得f(?)?1??.
(2)存在两个不同的点?,??(0,1),使得f?(?)f?(?)?1. (19)(本题满分12分)
设函数?(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.
Yi?Xi?X,i?1,2,?,n.
求:(1)Yi的方差DYi,i?1,2,?,n. (2)Y1与Yn的协方差Cov(Y1,Yn).
???(y)dx?2xydy2x2?y4L考研英语作文模板
2012年河师大考研群河师大考研QQ群:27619690,欢迎加入我们
2006年全国硕士研究生入学统一考试
数学(一)试卷
(A)
?an?1??n收敛 (B)
?(?1)n?1??nan收敛
(C)
一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)
?anan?1收敛
n?1 (D)
1an?an?1收敛 ?2n?1xln(1?x)?.
x?01?cosxy(1?x)(2)微分方程y??的通解是 . x(1)lim(3)设?是锥面z?(10)设f(x,y)与?(x,y)均为可微函数,且?y(x,y)?0.已知(x0,y0)是f(x,y)在约束条件下的一个极值点,下列选项正确的是 ?(x,y)?0(A)若fx?(x0,y0)?0,则fy?(x0,y0)?0 (C)若fx?(x0,y0)?0,则fy?(x0,y0)?0
(B)若fx?(x0,y0)?0,则fy?(x0,y0)?0 (D)若fx?(x0,y0)?0,则fy?(x0,y0)?0
x2?y2(0?z?1)的下侧,则??xdydz?2ydzdx?3(z?1)dxdy? . ?(4)点(2,1,0)到平面3x?4y?5z?0的距离z= . (5)设矩阵A???21??,E为2阶单位矩阵,矩阵B满足BA?B?2E,则B= . ??12?(11)设α1,α2,?,αs,均为n维列向量,A是m?n矩阵,下列选项正确的是
(A)若α1,α2,?,αs,线性相关,则Aα1,Aα2,?,Aαs,线性相关 (B)若α1,α2,?,αs,线性相关,则Aα1,Aα2,?,Aαs,线性无关 (C)若α1,α2,?,αs,线性无关,则Aα1,Aα2,?,Aαs,线性相关 (D)若α1,α2,?,αs,线性无关,则Aα1,Aα2,?,Aαs,线性无关.
(12)设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记
(6)设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P?max{X,Y}?1?= .
二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)
(7)设函数y?f(x)具有二阶导数,且f?(x)?0,f??(x)?0,?x为自变量x在x0处的增量,?y与dy分别为f(x)在点x0处对应的增量与微分,若?x?0,则
(A)0?dx??y (C)?y?dy?0
?
1
(B)0??y?dy (D)dy??y?0
?110???P??010?,则
?001????1(A)C?PAP
(B)C?PAP (D)C?PAP
T?1
(8)设f(x,y)为连续函数,则
220?40d??f(rcos?,rsin?)rdr等于
0T(C)C?PAP
(A)
??dx?dy??1?x2xf(x,y)dy
(B)
?220dx?1?x20f(x,y)dy
1?y20(13)设A,B为随机事件,且P(B)?0,P(A|B)?1,则必有 (A)P(A?B)?P(A) (C)P(A?B)?P(A)
(B)P(A?B)?P(B) (D)P(A?B)?P(B)
(C)
2201?y2yf(x,y)dx
(C)
?220dy?f(x,y)dx
(9)若级数
?an?1n收敛,则级数
2(14)设随机变量X服从正态分布N(?1,?12),Y服从正态分布N(?2,?2),
考研英语作文模板
2012年河师大考研群河师大考研QQ群:27619690,欢迎加入我们
且P{|X??1|?1}?P{|Y??2|?1},则
(A)?1??2 (C)?1??2
(B)?1??2 (D)?1??2
有3个线性无关的解,
(1)证明方程组系数矩阵A的秩r?A??2. (2)求a,b的值及方程组的通解. (21)(本题满分9分)
设3阶实对称矩阵A的各行元素之和均为3,向量α1???1,2,?1?,α2??0,?1,1?是线性方程组
TT?x1?x2?x3?x4??1??4x1?3x2?5x3?x4??1 ?ax?x?3x?bx?134?12
三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分)
1?xy设区域D=?x,y?x?y?1,x?0,计算二重积分I???dxdy. 221?x?yD?22?(16)(本题满分12分)
设数列?xn?满足0?x1??,x??1?sinxn?n?1,2,...?. 求:(1)证明limxn存在,并求之.
x??Ax?0的两个解.
(1)求A的特征值与特征向量.
(2)求正交矩阵Q和对角矩阵A,使得QAQ?A. (22)(本题满分9分)
T1?xn?1?xn2(2)计算lim??. x???xn?(17)(本题满分12分) 将函数f?x??x展开成x的幂级数. 22?x?x(18)(本题满分12分)
设函数f?u?在?0,???内具有二阶导数,且z?f?1?2,?1?x?0??12随机变量x的概率密度为fx?x???,0?x?2令y?x,F?x,y?为二维随机变量(X,Y)的分布函
?4?0,其它???x2?y2??2z?2z满足等式2?2?0.
?x?y数.
(1)求Y的概率密度fY?y?. (2)F??(1)验证f???u??f??u??0. u?1?,4?. ?2?(2)若f?1??0,f??1??1,求函数f(u)的表达式. (19)(本题满分12分) 设在上半平面D?(23)(本题满分9分)
??x,y?y?0?内,数f?x,y?是有连续偏导数,且对任意的t?0都有
?设总体X的概率密度为F(X,0)? 1??00?x?1 1?x?2,其中?是未知参数(0???1),X1,X2...,Xn为来其它f?tx,ty??t2f?x,y?.
证明: 对L内的任意分段光滑的有向简单闭曲线L,都有(20)(本题满分9分) 已知非齐次线性方程组
自总体X的简单随机样本,记N为样本值x1,x2...,xn中小于1的个数,求?的最大似然估计.
??yf(x,y)dx?xf(x,y)dy?0.
L考研英语作文模板