11
5,DF=AF=AC=×8=4,∴四边形AEDF的周长=AE+DE+DF+AF=5+5+4
22+4=18;
(2)证明:∵DE=AE,DF=AF,∴E是AD的垂直平分线上的点,F是AD的垂直平分线上的点,∴EF垂直平分AD.
方法总结:当已知条件含有线段的中点、直角三角形等条件时,可联想直角三角形斜边上的中线的性质,连接中点和直角三角形的直角顶点进行求解或证明.
探究点四:直角三角形性质的综合运用
【类型一】 利用直角三角形的性质证明线段关系 如图,在△ABC中,AB=AC,∠
BAC=120°,EF为AB的垂直平分线,交BC于F,交AB于点E.求证:FC=2BF.
解析:根据EF是AB的垂直平分线,联想到垂直平分线的性质,因此连接
AF,得到△AFB为等腰三角形.又可求得∠B=∠C=∠BAF=30°,进而求得∠FAC=90°.取CF的中点M,连接AM,就可以利用直角三角形的性质进行证明.
证明:如图,取CF的中点M,连接AF、AM.∵EF是AB的垂直平分线,∴AF1
=BF.∴∠BAF=∠B.∵AB=AC,∠BAC=120°,∴∠B=∠BAF=∠C=(180°
2-120°)=30°.∴∠FAC=∠BAC-∠BAF=90°.在Rt△AFC中,∠C=30°,M1
为CF的中点,∴∠AFM=60°,AM=FC=FM.∴△AFM为等边三角形.∴AF=AM211
=FC.又∵BF=AF,∴BF=FC,即FC=2BF. 22
方法总结:当已知条件中出现直角三角形斜边上的中线时,通常会运用到“直角三角形斜边上的中线等于斜边的一半”这个性质,使用该性质时,要注意找准斜边和斜边上的中线.
【类型二】 利用直角三角形的性质解决实际问题
如图所示,四个小朋友在操场上
做抢球游戏,他们分别站在四个直角三角形的直角顶点A、B、C、D处,球放在
EF的中点O处,则游戏________(填“公平”或“不公平”).
解析:游戏是否公平就是判断点A、B、C、D到点O的距离是否相等.四个直角三角形有公共的斜边EF,且O为斜边EF的中点.连接OA、OB、OC、OD.根据“直角三角形斜边上的中线等于斜边的一半”的性质可知,OA=OB=OC=OD1
=EF,即点A、B、C、D到O的距离相等.由此可得出结论:游戏公平. 2
方法总结:题目中如果出现“直角三角形”和“中点”这两个条件时,应连接直角顶点与斜边中点,再利用“斜边上的中线等于斜边的一半的性质”解题.
【类型三】 利用直角三角形性质解动态探究题 如图所示,在Rt△ABC中,AB=
AC,∠BAC=90°,O为BC的中点.
(1)写出点O到△ABC的三个顶点A、B、C的距离的数量关系;
(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM.请判断△OMN的形状,并证明你的结论.
1
解析:(1)由于△ABC是直角三角形,O是BC的中点,得OA=OB=OC=BC;
2(2)由于OA是等腰直角三角形斜边上的中线,因此根据等腰直角三角形的性质,得∠CAO=∠B=∠45°,OA=OB,又AN=MB,所以△AON≌△BOM,所以ON=OM,∠NOA=∠MOB,于是有∠NOM=∠AOB=90°,所以△OMN是等腰直角三角形.
1
解:(1)连接AO.在Rt△ABC中,∠BAC=90°,O为BC的中点,∴OA=BC2=OB=OC,即OA=OB=OC;
(2)△OMN是等腰直角三角形.理由如下:∵AC=BA,OC=OB,∠BAC=90°,1
∴OA=OB,∠NAO=∠CAB=∠B=45°,AO⊥BC,又AN=BM,∴△AON≌△BOM,
2∴ON=OM,∠NOA=∠MOB,∴∠NOA+∠AOM=∠MOB+∠AOM,∴∠NOM=∠AOB=90°,∴△MON是等腰直角三角形.
方法总结:解决动态探究性问题,要把握住动态变化过程中的不变量,比如角的度数、线段的长和不变的数量关系,比如斜边上的中线等于斜边的一半,直角三角形两锐角互余.
三、板书设计 1.直角三角形的性质
性质一:直角三角形的两锐角互余;
性质二:直角三角形斜边上的中线等于斜边的一半. 2.直角三角形的判定
方法一:一个角是直角的三角形是直角三角形; 方法二:两锐角互余的三角形是直角三角形.
通过练习反馈的情况来看,学生对于利用已知条件判定一个三角形是否为直角三角形这一考点比较容易上手一些,而往往忽略在直角三角形中告诉斜边上的