2024年云南省曲靖市罗平县中考数学一模试卷
一、填空题(本大题共6个小题,每小题3分,共18分) 1.﹣2024的相反数是 .
2.若关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值为 . 3.某县人口约为620300人,用科学记数法可表示为 .
4.如图,在△ABC中,AC=12,AP=3,∠ABP=∠C,则AB= .
5.如图,正六边形ABCDEF的边长为1,以点A为圆心,AB的长为半径,作扇形ABF,则图中阴影部分的面积为 (结果保留根号和π).
6.已知a+b=5,ab=3,则a﹣b= .
二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分) 7.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是( )
A. B.
C. D.
8.下列等式中,正确的是( ) A.3a﹣2a=1 C.(﹣2a3)2=﹣4a6
B.a2?a3=a5
D.(a﹣b)2=a2﹣b2
9.函数A.x≥1
的自变量的取值范围是( )
B.x>1
C.x≤1
D.x<1
10.已知一个多边形的每一个内角都等于135°,则这个多边形是( ) A.五边形
B.六边形
C.七边形
D.八边形
11.某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45
则这组数据的中位数、平均数分别是( ) A.42、42
B.43、42
C.43、43
D.44、43
12.在Rt△ABC中,∠C=90°,cosA=,BC=6cm,则AC的长度为( ) A.9cm
B.8cm
C.7cm
D.6cm
13.如图,把一张长方形的纸片沿着EF折叠,点C、D分别落在M、N的位置,且∠MFB=∠MFE.则∠MFB=( )
A.30° B.36° C.45° D.72°
14.如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为( )
A.40° B.50° C.60° D.70°
三.解答题(本大题共9个小题,共70分) 15.(6分)计算:(﹣2024)0﹣|1﹣
|+()﹣1+2sin45°.
16.(6分)如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.
17.(8分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:
(1)该超市“元旦”期间共销售 个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度; (2)补全条形统计图;
(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?
18.(6分)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.这种笔和本子的单价各是多少元?
19.(7分)某中学五四期间举行师生游戏,主持人请三位老师分别带自己的学生参加游戏,主持人准备把老师和学生重新组合完成游戏,A、B、C分别表示三位老师,他们的学生分别对应的是a、b、c.若主持人分别从三位老师和三位学生中各选一人参加游戏.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果; (2)求选到的两人恰好是老师和自己学生的概率P.
20.BD交于点O,OD为邻边作平行四边形OCED,(8分)如图,矩形ABCD的对角线AC,以OC,连接OE.
(1)求证:四边形OBCE是平行四边形;
(2)连接BE交AC于点F.若AB=2,∠AOB=60°,求BF的长.
21.(8分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.
(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?
(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?