好文档 - 专业文书写作范文服务资料分享网站

西安电子科技大学数字信号处理大作业

天下 分享 时间: 加入收藏 我要投稿 点赞

数字信号处理大作业

班级:021231 学号:

姓名:

指导老师:吕雁

精品文档

一 写出奈奎斯特采样率和和信号稀疏采样的学习报告和体会

1、采样定理

在进行A/D信号的转换过程中,当采样频率fs.max大于信号中最高频

率fmax的2倍时(fs.max>2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。

(1) 在时域

频带为F的连续信号 f(t)可用一系列离散的采样值f(t1),f(t1±Δt),

f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各采样值完全恢复原始信号。

(2) 在频域

当时间信号函数f(t)的最高频率分量为fmax时,f(t)的值可由一系列

采样间隔小于或等于1/2fo的采样值来确定,即采样点的重复频率fs ≥2fmax。

2、奈奎斯特采样频率

(1)概述

奈奎斯特采样定理:要使连续信号采样后能够不失真还原,采样频率必须大于信号最高频率的两倍(即奈奎斯特频率)。

奈奎斯特频率(Nyquist frequency)是离散信号系统采样频率的一半,因哈里·奈奎斯特(Harry Nyquist)或奈奎斯特-香农采样定理得名。采样定理指出,只要离散系统的奈奎斯特频率高于被采样信号的最高频率或带宽,就可以真实的还原被测信号。反之,会因为频谱混叠而不能真实还原被测信号。 采样定理指出,只要离散系统的奈奎斯特频率高于采样信号的最高频率或带宽,就可以避免混叠现象。从理论上说,即使奈奎斯特频率恰好大于信号带宽,也足以通过信号的采样重建原信号。但是,重建信号的过程需要以一个低通滤波器或者带通滤波器将在奈奎斯特频率之上的高频分量全部滤除,同时还要保证原信号中频率在奈奎斯特频率以下的分量不发生畸变,而这是不可能实现的。在实际应用中,为了保证抗混叠滤波器的性能,接近奈奎斯特频率的分量在采样和信号重建的过程中可能会发生畸变。因此信号带宽通常会略小于奈奎斯特频率,具体的情况要看所使用的滤波器的性能。需要注意的是,奈奎斯特频率必须严格大于信号包含的最高频率。如果信号中包含的最高频率恰好为

1欢迎下载

精品文档

奈奎斯特频率,那么在这个频率分量上的采样会因为相位模糊而有无穷多种该频率的正弦波对应于离散采样,因此不足以重建为原来的连续时间信号。

(2) 奈奎斯特频率的应用

除了奈奎斯特频率之外,还有一个指标非常重要,这个指标就是测量装置的带宽。严格讲,带宽包含上限和下限两个数值,但是,由于许多宽频带的测量设备,比如说变频功率分析仪,其带宽的频率上限远远大于频率下限,或者频率下限为零,因此,一般以频率上限作为该仪器的带宽。一般而言,带宽指-3db带宽。-3db带宽并不表明高于带宽上限频率的信号不能通过测量仪器。举例而言,某功率分析仪的带宽上限为100kHz,那么,100kHz的正弦波通过测量仪器的AD转换器之前的电路时,幅值衰减为原信号幅值的70.7%,功率衰减为原信号的50%。

此外,对于非正弦波形,其含有的谐波频率高于信号频率(基波频率)。因此,不能简单的认为,100kHz带宽的仪器可以用于测量100kHz的正弦波,更不能认为100kHz带宽的仪器可以用于测量100kHz的方波或畸变波形。 要让采样过程符合奈奎斯特采样定理,测量仪器的带宽应该小于奈奎斯特频率。若测量仪器的电路固有带宽高于奈奎斯特频率,应该在AD转换器之间加上截至频率小于奈奎斯特频率的防混叠滤波器。对于后者,防混叠滤波器的截至频率就是仪器的带宽。

3、稀疏采样

目前,Candes,Romberg,Tao和Donoho等人提出了一种全新的理论一压

缩感知理论(Compressed Sensing)。该理论是一种崭新的信号采样、信号编码和信号解码理论。采样速率不再像Nyquist速率一样,与信号的带宽密切相关,而是与信息在信号中的结构和位置息息相关。编码过程是围绕观测器即观测矩阵展开的,而解码过程是一个优化计算过程。该理论已经被证明能够用较低采样速率准确的进行信号采样,并且能够以很高的概率重构原始信号。目前国内已经有科研单位的学者对其展开研究。如我们学校课题组基于该理论提出采用超低速率采样检测超宽带回波信号。

其CS理论如图:

2欢迎下载

西安电子科技大学数字信号处理大作业

数字信号处理大作业班级:021231学号:姓名:指导老师:吕雁精品文档一写出奈奎斯特采样率和和信号稀疏采样的学习报告和体会1、采样定理在进行A/D信号的转换过程中,当
推荐度:
点击下载文档文档为doc格式
3ba335xrvt6et871df8g8njyy26yjv018hk
领取福利

微信扫码领取福利

微信扫码分享