精品文档
上式即为定积分的分部积分公式。
例题:计算 解答:设
,且当x=0时,t=0;当x=1时,t=1.由前面的换元公式得:
再用分部积分公式计算上式的右端的积分。设u=t,dv=edt,则du=dt,v=e.于是:
t
t
故:
广义积分
在一些实际问题中,我们常遇到积分区间为无穷区间,或者被积函数在积分区间上具有无穷间断点的积分,它们已不属于前面我们所学习的定积分了。为此我们对定积分加以推广,也就是———广义积分。 一:积分区间为无穷区间的广义积分
设函数f(x)在区间[a,+∞)上连续,取b>a.如果极限
则此极限叫做函数f(x)在无穷区间[a,+∞)上的广义积分,
存在,
记作:,
即: 此时也就是说广义积分
=. 发散,此
收敛。如果上述即先不存在,则说广义积分
时虽然用同样的记号,但它已不表示数值了。
类似地,设函数f(x)在区间(-∞,b]上连续,取a 则此极限叫做函数f(x)在无穷区间(-∞,b]上的广义积分, . 存在, 精品文档 记作:, 即: 此时也就是说广义积分 如果广义积分 (-∞,+∞)上的广义积分, 和 =. 发散。 收敛。如果上述极限不存在,就说广义积分 都收敛,则称上述两广义积分之和为函数f(x)在无穷区间 记作: 即: 上述广义积分统称积分区间为无穷的广义积分。 , = 例题:计算广义积分 解答: 二:积分区间有无穷间断点的广义积分 设函数f(x)在(a,b]上连续,而.取ε>0,如果极限 数f(x)在(a,b]上的广义积分, 存在,则极限叫做函 仍然记作:. 即: 这时也说广义积分 =, 发散。 收敛.如果上述极限不存在,就说广义积分 . 精品文档 类似地,设f(x)在[a,b)上连续,而.取ε>0,如果极限 则定义 否则就说广义积分 发散。 = 存在, ; 又,设f(x)在[a,b]上除点c(a 都收敛, 则定义: 否则就说广义积分 发散。 .如果两个广义积分和 =+. 例题:计算广义积分(a>0) 解答:因为得: ,所以x=a为被积函数的无穷间断点,于是我们有上面所学得公式可 六、空间解析几何 空间直角坐标系 空间点的直角坐标系 为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。 过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条. 精品文档 轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。(如下图所示) 三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。 取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。 例:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一的确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标。(如下图所示) 坐标为x,y,z的点M通常记为M(x,y,z). 这样,通过空间直角坐标系,我们就建立了空间的点M和有序数组x,y,z之间的一一对应关系。 注意:坐标面上和坐标轴上的点,其坐标各有一定的特征. 例:如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点, 则x=y=z=0,等。 . 精品文档 空间两点间的距离 设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d我们有公式: 例题:证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形△ABC是一等腰三角形. 解答:由两点间距离公式得: 由于,所以△ABC是一等腰三角形 方向余弦与方向数 解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。 方向角与方向余弦 设有空间两点 ,若以P1为始点,另一点P2为终点的线段称为 有向线段.记作.通过原点作一与其平行且同向的有向线段.将与Ox,Oy,Oz三个的方向角.其中 坐标轴正向夹角分别记作α,β,γ.这三个角α,β,γ称为有向线段0≤α≤π,0≤β≤π,0≤γ≤π. 关于方向角的问题 若有向线段的方向确定了,则其方向角也是唯一确定的。 方向角的余弦. 称为有向线段或相应的有向线段的方向余弦。