好文档 - 专业文书写作范文服务资料分享网站

高等数学教材资料完整

天下 分享 时间: 加入收藏 我要投稿 点赞

精品文档

上式即为定积分的分部积分公式。

例题:计算 解答:设

,且当x=0时,t=0;当x=1时,t=1.由前面的换元公式得:

再用分部积分公式计算上式的右端的积分。设u=t,dv=edt,则du=dt,v=e.于是:

t

t

故:

广义积分

在一些实际问题中,我们常遇到积分区间为无穷区间,或者被积函数在积分区间上具有无穷间断点的积分,它们已不属于前面我们所学习的定积分了。为此我们对定积分加以推广,也就是———广义积分。 一:积分区间为无穷区间的广义积分

设函数f(x)在区间[a,+∞)上连续,取b>a.如果极限

则此极限叫做函数f(x)在无穷区间[a,+∞)上的广义积分,

存在,

记作:,

即: 此时也就是说广义积分

=. 发散,此

收敛。如果上述即先不存在,则说广义积分

时虽然用同样的记号,但它已不表示数值了。

类似地,设函数f(x)在区间(-∞,b]上连续,取a

则此极限叫做函数f(x)在无穷区间(-∞,b]上的广义积分, .

存在,

精品文档

记作:,

即: 此时也就是说广义积分 如果广义积分

(-∞,+∞)上的广义积分,

=. 发散。

收敛。如果上述极限不存在,就说广义积分

都收敛,则称上述两广义积分之和为函数f(x)在无穷区间

记作: 即: 上述广义积分统称积分区间为无穷的广义积分。

, =

例题:计算广义积分 解答:

二:积分区间有无穷间断点的广义积分

设函数f(x)在(a,b]上连续,而.取ε>0,如果极限

数f(x)在(a,b]上的广义积分,

存在,则极限叫做函

仍然记作:.

即: 这时也说广义积分

=,

发散。

收敛.如果上述极限不存在,就说广义积分

.

精品文档

类似地,设f(x)在[a,b)上连续,而.取ε>0,如果极限

则定义 否则就说广义积分

发散。

=

存在,

又,设f(x)在[a,b]上除点c(a

都收敛,

则定义: 否则就说广义积分

发散。

.如果两个广义积分和

=+.

例题:计算广义积分(a>0)

解答:因为得:

,所以x=a为被积函数的无穷间断点,于是我们有上面所学得公式可

六、空间解析几何

空间直角坐标系

空间点的直角坐标系

为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。

过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条.

精品文档

轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。(如下图所示)

三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。 取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。 例:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一的确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标。(如下图所示)

坐标为x,y,z的点M通常记为M(x,y,z).

这样,通过空间直角坐标系,我们就建立了空间的点M和有序数组x,y,z之间的一一对应关系。

注意:坐标面上和坐标轴上的点,其坐标各有一定的特征.

例:如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点, 则x=y=z=0,等。 .

精品文档

空间两点间的距离

设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d我们有公式:

例题:证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形△ABC是一等腰三角形. 解答:由两点间距离公式得:

由于,所以△ABC是一等腰三角形 方向余弦与方向数

解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。 方向角与方向余弦 设有空间两点

,若以P1为始点,另一点P2为终点的线段称为

有向线段.记作.通过原点作一与其平行且同向的有向线段.将与Ox,Oy,Oz三个的方向角.其中

坐标轴正向夹角分别记作α,β,γ.这三个角α,β,γ称为有向线段0≤α≤π,0≤β≤π,0≤γ≤π. 关于方向角的问题

若有向线段的方向确定了,则其方向角也是唯一确定的。

方向角的余弦.

称为有向线段或相应的有向线段的方向余弦。

高等数学教材资料完整

精品文档上式即为定积分的分部积分公式。例题:计算解答:设,且当x=0时,t=0;当x=1时,t=1.由前面的换元公式得:再用分部积分公式计算上式的右端的积分。设u=t,dv=edt,则du=dt,v=e.于是:tt
推荐度:
点击下载文档文档为doc格式
3b0ms3ozkv9uewu2s0h44x67j2pwjr01ecp
领取福利

微信扫码领取福利

微信扫码分享