第八章 霍尔传感器
课题:霍尔传感器的原理及应用 难点: 重点: 教学目的和要求 课时安排:2 开关型霍尔集成电路的特性 霍尔传感器的应用 课次编号:12 教材分析 1、了解霍尔传感器的工作原理; 2、了解霍尔集成电路的分类; 3、掌握线性型和开关型霍尔集成电路的特性; 4、掌握霍尔传感器的应用。 讲授、课堂互动、分析 教具:各种霍尔元件、霍尔传感器 采用教学方法和实施步骤: 各教学环节和内容 演示1: 将小型蜂鸣器的负极接到霍尔接近开关的OC门输出端,正极接Vcc端。在没有磁铁靠近时,OC门截止,蜂鸣器不响。 当磁铁靠近到一定距离(例如3mm)时,OC门导通,蜂鸣器响。将磁铁逐渐远离霍尔接近开关到一定距离(例如5mm)时,OC门再次截止,蜂鸣器停响。 演示2: 将一根导线穿过10A霍尔电流传感器的铁芯,通入0.1~1A电流,观察霍尔IC的输出电压的变化,基本与输入电流成正比。 从以上演示,引入第一节霍尔效应、霍尔元件的工作原理。 第一节 霍尔元件的工作原理及特性 一、工作原理 金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势EH,这种现象称为霍尔效应(Hall Effect),该电动势称为霍尔电动势(Hall EMF),上述半导体薄片称为霍尔元件(Hall Element)。用霍尔元件做成的传感器称为霍尔传感器(Hall Transducer)。 图8-1 霍尔元件示意图 a)霍尔效应原理图 b)薄膜型霍尔元件结构示意图 c)图形符号 d)外形 霍尔属于四端元件: 其中一对(即a、b端)称为激励电流端,另外一对(即c、d端)称为霍尔电动势输出端,c、d端一般应处于侧面的中点。 由实验可知,流入激励电流端的电流I越大、作用在薄片上的磁场强度B越强,霍尔电动势也就越高。霍尔电动势EH可用下式表示 EH=KH IB (8-1) 式中 KH——霍尔元件的灵敏度。 若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度θ时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即Bcosθ,这时的霍尔电动势为 EH=KHIBcosθ (8-2) 从式(8-2)可知,霍尔电动势与输入电流I、磁感应强度B成正比,且当B的方向改变时,霍尔电动势的方向也随之改变。如果所施加的磁场为交变磁场,则霍尔电动势为同频率的交变电动势。 目前常用的霍尔元件材料是N型硅,霍尔元件的壳体可用塑料、环氧树脂等制造。 二、主要特性参数 (1)输入电阻Ri 恒流源作为激励源的原因:霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值从几十欧到几百欧,视不同型号的元件而定。温度升高,输入电阻变小,从而使输入电流Iab变大,最终引起霍尔电动势变大。使用恒流源可以稳定霍尔原件的激励电流。 (2)最大激励电流Im 激励电流增大,霍尔元件的功耗增大,元件的温度升高,从而引起霍尔电动势的温漂增大,因此每种型号的元件均规定了相应的最大激励电流,它的数值从几毫安至十几毫安。 提问:霍尔原件的最大激励电流Im 为宜。 A.0mA B.±0.1 mA C.±10mA D.100mA (4)最大磁感应强度Bm 磁感应强度超过Bm时,霍尔电动势的非线性误差将明显增大,Bm的数值一般小于零点几特斯拉。 提问:为保证测量精度,图8-3中的线性霍尔IC的磁感应强度不宜超过 为宜。 A.0T B.±0.10T C.±0.15T D.±100Gs 第二节 霍尔集成电路 霍尔集成电路(又称霍尔IC)的优点:体积小、灵敏度高、输出幅度大、温漂小、对电源稳定性要求低等。 霍尔集成电路的分类:线性型和开关型两大类。 线性型的内部电路: 霍尔元件和恒流源、线性差动放大器等做在一个芯片上,输出电压为伏级,比直接使用霍尔元件方便得多。 开关型霍尔集成电路的内部电路: 霍尔元件、稳压电路、放大器、施密特触发器、OC门(集电极开路输出门)等电路做在同一个芯片上。当外加磁场强度超过规定的工作点时,OC门由高阻态变为导通状态,输出变为低电平;当外加磁场强度低于释放点时,OC门重新变为高阻态,输出高电平。 图8-2 线性型霍尔集成电路 a)外形尺寸 b)内部电路框图 图8-3 线性型霍尔集成电路输出特性 图8-4 开关型霍尔集成电路 a)外形尺寸 b)内部电路框图 图8-5 开关型霍尔集成电路的史密特输出特性 注:1特斯拉(T)=104高斯(Gs) 提问:磁铁从远到近,逐渐靠近图8-5所示的开关型霍尔IC,问,多少高斯时,输出翻转?成为什么电平? 表8-1 具有史密特特性的OC门输出状态与磁感应强度变化之间的关系 B/T 磁感应强度B的变化方向及数值 0 ? 0.02 ? 0.023 ? 0.03 ? 0.02 ? 0.016 ? 0 高电平① 高电平② 低电平 低电平 低电平③ 高电平 高电 高阻态 高阻态 低电平 低电平 低电平 高阻态 高 OC门输出状态 OC门接法 接上拉电阻RL 不接上拉电阻RL ①:OC门输出的高电平电压由VCC决定; ②、③:OC门的迟滞区输出状态必须视B的变化方向而定. 第三节 霍尔传感器的应用 霍尔电动势是关于I、B、θ三个变量的函数,即EH=KHIBcosθ,使其中两个量不变,将第三个量作为变量,或者固定其中一个量、其余两个量都作为变量,三个变量的多种组合等。 1)维持I、θ不变,则EH=f(B),这方面的应用有:测量磁场强度的高斯计、测量转速的霍尔转速表、磁性产品计数器、霍尔角编码器以及基于微小位移测量原理的霍尔加速度计、微压力计等。 2)维持I、B不变,则EH=f(θ),这方面的应用有角位移测量仪等。 3)维持θ不变,则EH=f(IB),即传感器的输出EH与I、B的乘积成正比,这方面的应用有模拟乘法器、霍尔功率计、电能表等。 1.角位移测量仪 角位移测量仪结构示意图如图8-8所示。霍尔器件与被测物连动,而霍尔器件又在一个恒定的磁场中转动,于是霍尔电动势EH就反映了转角θ的变化。 图8-8 角位移测量仪结构示意图 1-极靴 2-霍尔器件 3-励磁线圈 发散性思维: 将图8-8的铁芯气隙减小到夹紧霍尔IC的厚度。则B正比于Ui,霍尔IC的Uo正比于B,可以改造为霍尔电压传感器。 与交流互感器不同的是:可以测量直流电压,如右图所示。 4.霍尔接近开关 在第四章里,曾介绍过接近开关的基本概念。用霍尔接近开关也能实现接近开关的功能,但是它只能用于铁磁材料,并且还需要建立一个较强的闭合磁场。 霍尔接近开关应用示意图如图图8-12所示。在图8-12b中,磁极的轴线与霍尔接近开关的轴线在同一直线上。当磁铁随运动部件移动到距霍尔接近开关几毫米时,霍尔接近开关的输出由高电平变为低电平,经驱动电路使继电器吸合或释放,控制运动部件停止移动(否则将撞坏霍尔接近开关)起到限位的作用。 图8-12 霍尔接近开关应用示意图 a)外形 b)接近式 c)滑过式 d)分流翼片式 1-运动部件 2-软铁分流翼片 提问:b)接近式 c)滑过式哪一种不易损坏?为什么? 在图8-12d中,磁铁和霍尔接近开关保持一定的间隙、均固定不动。软铁制作的分流翼片与运动部件联动。当它移动到磁铁与霍尔接近开关之间时,磁力线被屏蔽(分