基本初等函数复习(题型最全、最细、最精)
基本初等函数复习
一、基础复习:
1、a的次方根: , x叫a的n次方根
?a,当n为奇数时na??根式的性质:(1)(na)n= ,(n?1,且n?N?);(2)?|a|,当n为偶数时
nnm2、分数指数幂与根式:a? a?n? a1? a0?
3、幂的运算性质:ar?as? ar?as? (ar)s? (ab)r? 4、指数式与对数式的互化:ab?N?
5、对数的性质:(1)N (2)loga1? (3)logaa? 6、对数恒等式:alogaN? logaab?
7、对数的运算法则:loga(M?N)? loga(M)? logaM?? Nm8、换底公式:logab? logab? logabn? 9、常用对数:log10N? 自然对数:logeN? 10、幂、指、对函数函数的性质 二、典型例题: 1、指数、对数运算: 1
、
下
列
各
式
中
,
正
确
的
是
( )
A.0?1 B.(?1)?1 C.a0?11?74?17a4 D.a?35?15a3
?2. 计算:(1)?1?4?(?2)?3?(1)0?92 = ;
24 2
1(ab)(?3ab)?(a6b6)33.化简的结果
2312121315( )
2A.6a B.?a C.?9a D.9a
11
4.已知2x=72y=A,且+=2,则A的值是
xy
A.7 B.72 C.±75.
若
2 D.98
a、b、c∈R+,则3a=4b=6c,则
( )
A.??
1c1a1b B.??C.?? D.??
2c2a1b1c2a2b2c1a2b14
6. 若a<,则化简(2a-1)2的结果是
2
A.
2a-1 B.-
2a-1 C.1-2a D.-
1-2a
7、计算下列各式的值
(1)5?26?6?42; (2);lg5(lg8?lg1000)?(lg23)2?lg?lg0.06
8、设4a?5b?100,求2(?)的值.
4x9、已知f(x)?x,且0?a?1,
4?2161a2b1231000(1)求f(a)?f(1?a)的值;(2)求f()?f()?f()?...?f()的值.
1001100110011001
3