好文档 - 专业文书写作范文服务资料分享网站

人教版数学八年级下册:第19章《一次函数》同步练习题及答案

天下 分享 时间: 加入收藏 我要投稿 点赞

《一次函数》同步练习

一、选择题

1.下列函数(1)y=3πx;(2)y=8x-6;(3)y=

112

;(4)y=-8x;(5)y=5x-4x+1中,是x2一次函数的有( )

A.4个 B.3个 C.2个 D.1个 2.(3分)直线y=x+3与x轴的交点是() A.(﹣3,0) B.(0,﹣3) C.(0,3) D.(3,0) 3.以下四点:(1,2),(2,3),(0,1),(﹣2,3)在直线y=2x+1上的有( ) A.1个 B.2个 C.3个 D.4个

4.若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则( ) A.m>0 B.m<0 C.m>3 D.m<3

5.一次函数y=(m﹣3)x﹣m的图象经过一、二、四象限,则m的取值范围是( ) A.m<0 B.m<3 C.0<m<3 D.m>0

6.已知一次函数y=kx+1,y随x的增大而增大,则该函数的图象一定经过( )

A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限 7.使函数y=x-2有意义的x的取值范围是( )

A.x<2 B.x>2 C.x≤2 D.x≥2

8.已知y与x+1成正比,当x=2时,y=9;那么当y=﹣15时,x的值为( ) A.4 B.﹣4 C.6 D.﹣6

9.已知等腰三角形的周长为20cm,将底边长y(cm)表示成腰长x(cm)的函数解析式为

y?20?2x,则其自变量x的取值范围是( )

A.0<x<10 B.5<x<10 C.一切实数 D.x>0

10.已知过点(2,-3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是( ) A.-5≤s≤-

二、填空题

3

11.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y(g/m)

3

与大气压强x(kPa)成正比例函数关系.当x=36(kPa)时,y=108(g/m),请写出y与x的函数关系式 . 12.若一次函数y=﹣2x+3的图象经过点P(﹣5,m)和点P(n),则m n.(用“>”、121,“<”或“=”填空)

13.将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为___________。

14.若y=|x-1|,当0<x≤5时,y的取值范围是 . 15.已知直线y=kx+b经过(1,﹣1),(﹣2,﹣7)两点,则k﹣2b的值为 . 16.若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是 . 17.直线y=-2x+m+2和直线y=3x+m-3的交点坐标互为相反数,则m=______。 3333 B.-6<s≤- C.-6≤s≤- D.-7<s≤- 2222

三、解答题

18.小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:

(1)小文走了多远才返回家拿书?

(2)求线段AB所在直线的函数解析式; (3)当x=8分钟时,求小文与家的距离.

19.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(-2,-1),与y轴的交点为C,与x轴的交点为D.

(1)求一次函数解析式; (2)求C点的坐标; (3)求△AOD的面积. 20.王先生开轿车从A地出发,前往B地,路过服务区休息一段时间后,继续以原速度行驶,到达B地后,又休息了一段时间,然后开轿车按原路返回A地,速度是原来的1.2倍.王先生距离A地的路程y(km)与行驶的时间x(h)之间的函数图象如图所示.

(1)王先生开轿车从A地行驶到B地的途中,休息了 h;

(2)求王先生开轿车从B地返回A地时y与x之间的函数关系式(不要求写出自变量x的取值范围);

(3)王先生从B地返回A地的途中,再次经过从A地到B地时休息的服务区,求此时的x的值.

21.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12

吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元. (1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;

(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元? 22.求下列函数中自变量的取值范围. (1)y=-3x+5; (2)y?

3x

; x?4

2x?4;

(3)y?(4)y?x; x?3x?1?36?2x.

(5)y?23.点A、B、C、D的坐标如图所示,求直线AB与直线CD的交点坐标.

24.一个安装了两个进水管和一个出水管的容器,每分钟的进水量和出水量是两个常数,且两个进水管的进水速度相同.进水管和出水管的进出水速度如图1所示,某时刻开始到6分钟(至少打开一个水管),该容器的水量y(单位:升)与时间x如图2所示.

(1)试判断0到1分、1分到4分、4分到6分这三个时间段的进水管和出水管打开的情况. (2)求4≤x≤6时,y随x变化的函数关系式.

(3)6分钟后,若同时打开两个水管,则10分钟时容器的水量是多少升?

参考答案

1.B. 2.A. 3.A. 4.C. 5.A 6.A 7.D 8.D 9.B. 10.B. 11.y=3x. 12.> 13.y=3x-4 14.0≤y≤4. 15.8. 16.﹣1. 17.-1.

18.(1)200米.(2) y=200x-1000;(3) 小文离家600米. 19.(1)一次函数解析式是y=x+1;(2)点C(0,1);(3)1. 20.(1)0.4;(2)y=-120x+960.(3)

19. 321.政府补贴优惠价1元, 市场调节价2.5元;当x≤12时,y=x,当x>12时,y=2. 5x-18;47元.

22.(1)x的取值范围为一切实数.

(2)解不等式x-4≠0,得x≠4,故x的取值范围为x≠4. (3)解不等式2x-4≥0,得x≥2,故x的取值范围为x≥2. (4)解不等式x+3>0,得x>-3,故x的取值范围为x>-3. (5)解不等式组??x?1≥0,得1≤x≤3,故x的取值范围为1≤x≤3.

?6?2x≥0,23.(-2,2)

24.1)0到1分,打开一个进水管,打开一个出水管,1分到4分,两个进水管和一个出水管全部打开,4分到6分,打开两个进水管,关闭出水管;(2)y=2x-4;(3)16升.

人教版数学八年级下册:第19章《一次函数》同步练习题及答案

《一次函数》同步练习一、选择题1.下列函数(1)y=3πx;(2)y=8x-6;(3)y=112;(4)y=-8x;(5)y=5x-4x+1中,是x2一次函数的有()A.4个B.3个C.2个D.1个2.(3分)直线y=x+3与x轴的交点是
推荐度:
点击下载文档文档为doc格式
39fh11q6up77xpo5846y5ap1c1kzfj00qds
领取福利

微信扫码领取福利

微信扫码分享