主要决定于植物种类、生育阶段及单株占有营养液量。一般瓜类、茄果类作物的耗氧量较大,叶菜类的耗氧量较小。植物处于生长茂盛阶段、占有营养液量少的情况下,溶存氧的消耗速度快;反之则慢。
(2)增氧措施
溶存氧的补充来源,一是从空气中自然向溶液中扩散;二是人工增氧。自然扩散的速度较慢,增量少,只适宜苗期使用,水培及多数基质培中都采用人工增氧的方法。人工增氧措施主要是利用机械和物理的方法来增加营养液与空气的接触机会,增加氧在营养液中的扩散能力,从而提高营养液中氧气的含量。具体的加氧方法有落差、喷雾、搅拌、压缩空气、循环流动、间歇供液、滴灌供液、夏季降低液温、降低营养液浓度、使用增氧器和化学增氧剂等。多种增氧方法结合使用,增氧效果更明显。营养液循环流动有利于带入大量氧气,此法效果很好,是生产上普遍采用的办法。循环时落差大、溅泼面较分散、增加一定压力形成射流等都有利于增大补氧效果。在固体基质的无土栽培中,为了保持基质中有充足的空气,可选用如珍珠岩、岩棉和蛭石等合适的多孔基质,还应避免基质积水。
4.2营养液浓度的调整
由于作物生长过程中不断吸收养分和水分,加之营养液中的水分蒸发,从而引起营养液浓度、组成发生变化。因此,需要监测和定期补充营养液的养分和水分。
4.2.1.水分的补充
水分的补充应每天进行,一天之内应补充多少次,视作物长势、每株占液量和耗水快慢而定。以不影响营养液的正常循环流动为准。在贮液池内划上刻度,定时使水泵关闭,让营养液全部回到贮液池中,如其水位已下降到加水的刻度线,即要加水恢复到原来的水位线。
4.2.2.养分的补充 养分的补充方法有以下几种:
方法一:根据化验了解营养液的浓度和水平 先化验营养液中NO3-N的减少量,按比例推算其他元素的减少量,尔后加以补充,使营养液保持应有的浓度和营养水平。 方法二:从减少的水量来推算 先调查不同作物在无土栽培中水分消耗量和养分吸收量之间的关系,再根据水分减少量推算出养分的补充量,加以补充调整。例如:已知硝态氮的吸收与水分的消耗的比例,黄瓜为70:100左右;番茄、甜椒为50:100左右;芹菜为130:100左右。据此,当总液量10000 L消耗5000L时,黄瓜需另追加3500L(5000×0.7)营养液,番茄、辣椒需追加2500 L(5000×0.5)营养液,然后再加水到总量10000 L。其他作物也以此类推。但作物的不同生育阶段,吸收水分和消耗养分的比例有一定差异,在调整时应加以注意。
方法三:从实际测定的营养液的电导率值变化来调整 这是生产上常用方法。根据电导率与营养液浓度的正相关性,求出线形回归方程(EC=a+bS),再通过测定工作液的电导率值,就可计算出营养液浓度,据此再计算出需补充的营养液量。
在无土栽培中营养液的电导率目标管理值经常进行调整的。营养液EC值不应过高成过低,否则对作物生长发生不良影响。因此,应经常通过检查调整,使营养液保持适宜的EC值。在调整时应逐步进行,不应使浓度变化大大。电导率调整的原则是:
1.针对栽培作物不同调整EC值
不同蔬菜作物对营养液的EC值的要求不同,这与作物的耐肥性和营养液配方有关。如在相同栽培条件下,番茄要求的营养液比莴苣要求的浓度高些。虽然如此,各种作物都有一个适宜浓度范围。就多数作物来说,适宜的EC值范围为0.5~3.0ms/cm,过高不利于生育。
2.针对不同生育期调整EC值
作物在不同生育期要求的营养液EC值不应完全一样,一般苗期略低,生育盛期略高。如日本有的资料报道,番茄在苗期的适宜EC值为0.8~1.0ms/cm,定植至第一穗花开放为1.0~1.5 ms/cm,结果盛期为1.5~2.0 ms/cm。
3.针对不同栽培季节、温度条件调整EC值
营养液的EC值受温度影响而发生变化,在一定范围内,随温度升高有增高的趋势。一般来说,营养液的EC值,夏季要低于冬季。据Adams认为,番茄用岩棉栽培冬季栽培的营养液EC值应为3.0~3.5 ms/cm,夏季降至2.0~2.5 ms/cm为宜。
4.针对栽培方式调整EC值
同一种作物采用无土栽培方式不同,EC值调整也不一样。例如,番茄水培和基质培相比,一般定植初期营养液的浓度都一样,到采收期基质培的营养液浓度比水培的低,这是因为基质会吸附营养之故。
5.针对营养液配方调整EC值
同样用于栽培番茄的日本山崎配方和美国A-H营养液配方,它们的总浓度相差1倍以上。因此在补充养分的限度就有很大区别(以每株占液量相同而言)。
采用低浓度的山崎配方补充养分的方法是:每天都补充,使营养液常处于1个剂量的浓度水平。即每天监测电导率以确定营养液的总浓度下降了百分之几个剂量,下降多少补充多少。
采用高浓度的美国A-H配方种植时补充养分的方法是:以总浓度不低于1/2个剂量时为补充界限。即定期测定液中电导率,如发现其浓度已下降到1/2个剂量的水平时,即行补充养分,补回到原来的浓度。隔多少天会下降到此限,视生育阶段和每株占液量多少而变。各人应在实践中自行积累经验而估计其天数。初学者应每天监测其浓度的变化。 应该注意的是营养液浓度的测定要在营养液补充足够水分使其恢复到原来体积时取样,而且一般生产上不作个别营养元素的测定,也不作个别营养元素的单独补充,要全面补充营养液。
4.3营养液酸碱度的控制
4.3.1营养液pH值对植物生长的影响
营养液的PH对植物生长的影响有直接的和间接的两方面。直接的影响是,当溶液pH过高或过低时,都会伤害植物的根系。据Hewitt概括历史资料认为:明显的伤害范围在pH4~9之外。有些特别耐碱或耐酸的植物可以在这范围之外正常生长。例如,蕹菜在PH3时仍可生长良好。在PH4~9范围内各种植物还有其较适的小范围。间接的影响是,使营养液中的营养元素有效性降低以至失效。PH>7时,P、Ca、Mg、Fe、Mn、B、Zn等的有效性都会降低,特别是Fe最突出;PH<5时,由于H+浓度过高而对Ca2+产生显著的拮杭,使植物吸不足Ca2+而出现缺Ca症。有时营养液的pH虽然处在不会伤害植物根系的范围(pH在4~9之间),仍会出现由于营养失调而生长不良的情况。所以,除了一些特别嗜酸或嗜碱的植物外,一般将营养液PH控制在5.5~6.5。
4.3.2营养液pH值发生变化的原因
营养液的PH变化主要受营养液配方中生理酸性盐和生理碱性盐的用量和比例、栽培作物种类、每株植物根系占有的营养液体积大小、营养液的更换速率等多种因素的影响。生产上选用生理酸碱变化平衡的营养液配方,可减少调节pH值的次数。植株根系占有营养液的体积越大,则其pH值的变化速率就越慢、变化幅度越小。营养液更换频率越高,则pH值变化速度延缓、变化幅度也小。但更换营养液不控制pH值变化不经济,费力费时,也不实际。
4.3.3营养液pH值的检测方法
检测营养液PH的常用方法有试纸测定法和电位法两种: 1.试纸测定法
取一条试纸浸入营养液样品中,半秒钟后取出与标准色板比较,即可知营养液的PH值。试纸最好选用PH4.5~8的精密试纸。
2.电位法
电位法是采用PH计测定营养液PH值的方法。在无土栽培中,应用PH计测试PH值,方法简便、快速、准确、精度较高,适合于大型无土栽培基地使用。常用的酸度计为PHS-2型酸度计。
4.3.4营养液pH值的控制
作物正常生长需要的pH范围一般在6~6.9,过高或过低都会影响生长,这是因为营养液的pH会影响多种必需元素的溶解度。阳离子的溶解度随着酸度的增加而增加,随着碱性的增加而减少,尤其是铁离子受PH的影响比其他阳离子更明显。酸度太高,会因铜、锰等肥料溶解度增加,造成铜、锰等阳离子过量而产生毒害;碱性太大,会发生铁、锌的沉淀而发生缺铁、缺锌生理病害。虽然蔬菜的种类不同,适于生长的pH不同,大多数蔬菜的最适pH都在6~6.9这一范围。
控制有两种含义:一是治标,即pH值不断变化时采取酸碱中和的办法进行调节。二是治本,即在营养液配方的组成上,使用适当比例的生理酸性盐和生理碱性盐,使营养液内部酸碱变化稳定在一定范围内。
1.选用生理平衡的配方
营养液的PH因盐类的生理反应而发生变化,其变化方向视营养液配方而定。选用生理平衡的配方能够使PH变化比较平稳,可以减少调整的麻烦,达到治本的目的。
2.酸碱中和
PH上升时,用稀酸溶液如H2SO4或HNO3溶液中和。H2SO4溶液的SO42-虽属营养成分,但植物吸收较少,常会造成盐分的累积;NO3-植物吸收较多,盐分累积的程度较轻,但要注意植物吸收过多的氮而造成体内营养失调。生产上多用H2SO4调节pH值。中和的用酸量不能用pH值作理论计算来确定。因营养液中有高价弱酸与强碱形成的盐类存在,例如K2HPO4、Ca(HCO3)2等,其离解是逐步的,会对酸起缓冲作用。因此,必须用实际滴定曲线的办法来确定用酸量。具体做法是取出定量体积的营养液,用已知浓度的稀酸逐滴加入,随时测其PH的变化,达到要求值后计出其用酸量,然后推算出整个栽培系统的总用酸量。应加入的酸要先用水稀释,以浓度为l~2mol/l为宜,然后慢慢注入贮液池中,随注随搅拌或开启水泵进行循环,避免加入速度过快或溶液过浓而造成的局部过酸而产生CaSO4的沉淀。
pH下降时,用稀碱溶液如NaOH或KOH中和。Na+不是营养成分,会造成总盐浓度的升高。K+是营养成分,盐分累积程度较轻,但其价格比较贵,且多吸收了也会引起营养失调。生产上最常用的还是NaOH。具体进行可仿照以酸中和碱性的做法。这里要注意的是局部过碱成会产生Mg(OH)2、Ca(OH)2等沉淀。
4.4光照与液温管理 1.光照管理
营养液受阳光直照时,对无土栽培是不利的。因为阳光直射使溶液中的铁产生沉淀,另外,阳光下的营养液表面会产生藻类,与栽培作物竞争养分和氧气。因此在无土栽培中,营养液应保持暗环境。
2.营养液温度管理
(1)营养液温度对植物的影响 营养液温度即液温直接影响到根系对养分的吸收、呼吸和作物生长,以及微生物活动。植物对低液温或高液温其适宜范围都是比较窄的。温度的波动会引起病原菌的滋生和生理障碍的产生,同时会降低营养液中氧的溶解度。稳定的液温可以减少过低或过高的气温对植物造成的不良影响。例如,冬季气温降到10℃以下,如果液温仍保持在16℃,则对番茄的果实发育没有影响,在夏季气温升到32~35℃时,如果液温仍保持不超过28℃,则黄瓜的产量不受影响,而且显著减少劣果数。即使是喜低温的鸭儿芹,如能保持液温在25℃以下,也能使夏季栽培的产量正常。一般来说,夏季的液温保持不超过28℃,冬季的液温保持不低于15℃,对适应于该季栽培的大多数作物都是适合的。
(2)营养液温度的调整 除大规模的现代化无土栽培基地外,我国多数无土栽培设施中没有专门的营养液温度调控设备,多数是在建造时采用各种保温措施。具体作法是:(1)种植槽采用隔热性能高的材料建造,如泡沫塑料板块、水泥砖块等;(2)加大每株的用液量,提高营养液对温度的缓冲能力;(3)设深埋地下的贮液池。营养液加温可采取在贮液池中安装不锈钢螺纹管,通过循环于其中的热水加温或用电热管加温。热水来源于锅炉加热、地热或厂矿余热加温。最经济的强制冷却降温方法是抽取井水或冷泉水通过贮液池中的螺纹管进行循环降温。
无土栽培中应综合考虑营养液的光、温状况,光照强度高,温度也应该高;光照强度低,温度也要低,强光低温不好,弱光高温也不好。
4.5供液时间与供液次数
营养液的供液时间与供液次数,主要依据栽培形式、植物长势长相、环境条件面是定。在栽培过程中都应考虑适时供液,保证根系得到营养液的充分供应,从经济用液考虑,最好采取定时供液。掌握供液的原则是:根系得到充分的营养供应。但又能达到节约能源和经济用肥的要求。一般在用基质栽培的条件下,每天供液2~4次即可,如果基质层较厚,供液次数可少些,基质层较薄,供液次数可多些。NFT培每日要多次供液,果菜每分钟供液量为2 L,而叶菜仅需1 L。作物生长盛期,对养分和水分的需要大,因此,供液次数应多;每次供液的时间也应长。供液主要集中在白天进行,夜间不供液或少供液。晴天供液次数多些,阴雨天可少些;气温高光线强时供液多些;温度低、光线弱时供液少些。应因时因地制宜,灵活掌握。
4.6营养液的更换
循环使用的营养液在使用一段时间以后,需要配制新的营养液将其全部更换。更换的时间主要决定于有碍作物正常生长的物质在营养液中累积的程度。这些物质主要来源于:营养液配方所带的非营养成分(NaNO3中的Na、CaCl2中的Cl等);中和生理酸碱性所产生的盐;使用硬水作水源时所带的盐分;植物根系的分泌物和脱落物以及由此而引起的微生物分解产物等。积累多了,造成总盐浓度过高而抑制作物生长,也干扰了对营养液养分浓度的准确测量。判断营养液是否更换的方法有:
1.经过连续测量,营养液的电导率值居高不降。
2.经仪器分析,营养液中的大量元素含量低而电导率值高。 3.营养液有大量病菌而致作物发病,且病害难以用农药控制。 4.营养液混浊。
5.如无检测仪器,可考虑用种植时间来决定营养液的更换时间。一般在软水地区,生长期较长的作物(每茬3~6个月,如果菜类)可在生长中期更换1次或不换液,只补充消耗的养分和水分,调节pH值。生长期较短的作物(每茬1~2个月,如叶菜类),可连续种3~4茬更换1次。每茬收获时,要将脱落的残根滤去,可在回水口安置网袋或用活动网袋
打捞,然后补足所欠的营养成分(以总剂量计算)。硬水地区,生长期较短的蔬菜一般每茬更换一次,生长期较长的果菜每1~2个月更换一次营养液。
4.7营养液的消毒
营养液循环使用,栽培床上如果发现病株,就会有导致营养液传染整个栽培床的危险。目前中国杭州水培番茄青枯病严重,原因是营养液循环使用,而未经消毒处理。所以对使用过的营养液应进行消毒处理,生产上使用的消毒方法有:
1.加热法:番茄青枯病病菌75℃5分钟热水中可以杀死,番根腐病、萎蔫病10分钟70℃热水中可以杀死。热处理一般不会影响营养液成分变化,95℃加热1小时营养液不变质。一般采用95℃30秒加热最有效。
2.紫外线照射法:紫外线照射时间越长防治效果越高,对番茄青枯病、黄瓜疫病都有防治效果。但紫外线照射容易发生螫合铁、锰的沉淀,而发生铁、锰缺乏症。
3.臭氧杀菌法:臭氧杀菌能力弱,营养液出现沉淀,铁、锰容易发生沉淀。 4.砂滤法:用过滤器或河砂过滤是一种最有希望推广的方法。
无论哪种消毒法,要完全杀死病原菌是不可能的。目前,我国对营养液消毒法的研究还是一项空白,有待于进一步研究使用。