飞轮储能在电力系统的工程应用
2018年底的统计数据表明,新能源发电装机首超水电,跃居我国第二大发电形式,但新能源本身固有的随机性和波动性对电网的稳定带来了挑战,并且新能源机组对电网调峰、调频的贡献可以忽略不计。建设一定规模以飞轮储能为代表的电网级灵活调节资源是应对这一挑战的途径之一,飞轮储能的工程价值则通过调频辅助服务市场等典型应用场景得以体现。本文通过对近年来飞轮储能工程项目进展情况的跟踪,介绍了飞轮储能技术的主要子系统及各大公司和研究机构的技术路线,归纳出飞轮储能在电力系统的工程应用主要包括电网调频、新能源消纳和微电网支撑等,应用于新能源消纳时飞轮储能有平滑出力和无功补偿等多种工作模式,可以弥补新能源发电的不确定性。但与功率型电池储能技术相比,制约飞轮储能技术大规模应用的瓶颈在于初始投资成本过高,电网级飞轮储能技术的发展方向应为更高的性价比,这样才能获得应有的市场份额。
关键词: 飞轮储能;工程应用;二次调频;无功补偿 最近十年来,新能源发电迅猛增长,到2018年底,新能源发电以18.89%的渗透率,跃居我国第二大发电形式。但新能源发电本身难以调峰调频,需要配套其他灵活电源为其服务,如西北地区就采取基于风火打捆或光火打捆的直流特高压外送方式。一方面特高压输电一定程度上解决了送电电网新能源消纳的问题,但同时也对受端电网的安全稳定运行带来了挑战,如2018年3月21日直流闭锁导致巴西特大停电事故,2015年9月锦苏直流特高压线路发生闭锁故障,导致电网频率最大波动达0.44 Hz。限于我国灵活调节机组的占比有限,燃煤机组不得不扛起深度调峰和电网调频的重任,但深度调峰时机组最主要的矛盾是燃烧稳定性,这与调频发生冲突,如何解决这一系列的问题对于电网调度部门和电源侧来说尤为重要。
国外发达国家的电源结构比较合理,灵活电源占比较大,电网稳定性较高,电能质量较好,如同样采用频率合格率指标,澳大利亚要求网频波动超过0.1 Hz的时间不大于1%,而我国在2008版电能质量国标中规定,网频波动超过0.2 Hz的时间不能大于2%,我国电能质量仍有提高的空间。目前,发达国家电网主要通过建立并完善辅助服务市场制度来灵活配置储能资源,也包括少部分有偿摊派,如西班牙、英国、德国、北欧、澳大利亚、美国中大西洋电力市场
(Pennsylvania-New Jersey-Maryland,PJM)和美国新英格兰等国家或地区的电力市场。除了辅助服务市场化程度更高,国外机组的参数设置也与国内不同。如我国早期从德国进口的机组其一次调频参数原设计为不带调频死区也不带限幅,日本的机组与德国类似,这与我国既带调频死区也带调频限幅的情况迥然不同。
1
2006年11月,国家能源局前身电监会印发了《发电厂并网运行管理规定》和《并网发电厂辅助服务管理暂行办法》(简称“两个细则”),两个细则开启了我国电力辅助服务补偿机制建设的前期探索。此后各地陆续制定了本区域的两个细则,对提供辅助服务的发电机组给予一定的经济补偿。2017年10月,山西能监办印发《山西电力调频辅助服务市场运营细则》,率先建立了以机组竞标调频里程、按调频性能高低补偿机组为特点的省级早期调频辅助服务市场,虽然调频里程的报价范围在不断变化,但细则的主要内容沿用至今,促成了最早一批电池储能调频项目的商运。2018年8月,南方能监局印发《广东调频辅助服务市场交易规则(试行)》,在调频里程补偿之外加入容量补偿并采用新的性能计算公式,该政策发布后广东成为目前电池储能调频项目最活跃的区域。2019年4月,华北能监局印发《蒙西电力市场调频辅助服务交易实施细则》征求意见稿,在筹建电力现货市场的同时兼顾调频辅助服务市场。2018年12月西北能监局印发《西北区域并网发电厂辅助服务管理实施细则》,该细则将一、二次调频都作为有偿服务,以此克服发电机组调频性能参差不齐的问题。总体上看,通过建立辅助服务市场制度激励发电侧主动提高性能指标获取收益拉动了储能技术的进步,在政策的激励下,山西、广东和蒙西电网先后出现利用电池储能技术辅助燃煤机组联合调频的商业模式。但鉴于储能调频技术的普及度仍不够高,依然面临着政策缺乏递进性、技术水平不够高、标准体系滞后等风险,需要对飞轮储能在电力系统的应用现状进行系统的研究,揭示传统机组的性能局限及飞轮储能的应用价值,以便更好地发展储能技术,建成符合国情的智能坚强电网。
1 飞轮储能系统基本结构
国外对于飞轮储能的研究开展较早,我国起步较晚,始于二十世纪九十年代。飞轮储能系统主要由转子、支承系统、真空与冷却系统、电机、储能变流器(power convertion system,PCS)构成,电机和PCS的选择相对比较方便,基本上都有货架产品,永磁电机、感应电机均可使用,感应电机技术成熟成本可控,是降低飞轮系统成本的首选,ABB、Emerson、Danfoss/Vacon等均有飞轮PCS出售。而转子、支承系统、真空与冷却系统的设计则千差万别。根据公开资料整理出国内外主要飞轮制造商和研究机构的产品技术指标如表1所示。
2
表1 国内外主要飞轮产品归纳
1.1 转 子
转子方面,在有电网储能飞轮产品的公司中,美国Beacon Power(被RGA LabsInc.收购)、KTSi公司(被石家庄盾石磁能科技有限责任公司收购)采用复合材料飞轮,加拿大Temporal Power(被天津贝肯新能源有限公司收购)、美国Amber Kinetics公司采用钢制转子,美国Swater Flow Group公司(与大连亨利科技有限公司合作)既使用复合材料飞轮,也有钢制飞轮。目前正在开发电网储能飞轮产品的机构中,北京泓慧国际能源技术发展有限公司、美国VYCON(与沈阳微控新能源技术有限公司合作)公司也采用钢制飞轮,清华大学飞轮储能技术团队对复合材料飞轮和钢制飞轮均有研究,2018年作为牵头单位承担国家重点研发项目“MW级先进飞轮储能关键技术硏究”。
1.2 支承系统
支承系统方面,机械轴承、永磁轴承和电磁轴承得到商业化应用,超导磁轴承目前成本太高。机械轴承技术成熟,成本相对较低,但允许的运行转速较低。电磁轴承的优点为:无机械接触、无磨损;无须润滑密封、可在任意介质中运行;转子动态性能可控。电磁轴承的缺点为:电磁铁会饱和,承载能力有限,几乎无过载能力;受驱动功率限制,电磁力摆率有限;存在失电坠落风险;主动控制电磁力消耗能量。永磁轴承多用于轴向,起到卸载转子重力的作用。Beacon Power采用轴向永磁轴承+径向机械轴承的方案;KTSi采用轴向针式宝石轴承+径向永磁轴承来支撑飞轮;Temporal Power则采用轴向永磁轴承+径向机械轴承的设计;Amber Kinetics采用轴向电磁轴承+径向机械轴承;Swater Flow Group采用轴向混合磁轴承+径向机械轴承;北京泓慧国际能源技术发展有限公司和VYCON均使用轴向电磁轴承+径向电磁轴承控制飞轮轴向和径向振动。
3
浙江大学采用轴向永磁轴承+径向电磁轴承的方案,推导了永磁轴承径向干扰力的解析式,提出了基于修正参数零力控制算法的电磁轴承控制方法,来抑制飞轮转子系统的干扰力,取得了较好的控制效果。江苏大学提出了径向永磁轴承+轴向永磁轴承+三自由度混合磁轴承组支承方案。清华大学提出铠装永磁轴承设计方法,磁环采用扇形磁瓦拼接,工作间隙附近,磁力与间隙关系近似线性化,磁轭面积约是磁环面积2倍时,轴承吸力最大。文献采用磁轭内嵌永磁环,永磁环与导磁静环、动环转子形成闭合磁路,永磁轴承动环为40Cr钢,在气隙为2 mm时,吸力约为10802 N。文献设计了一种双永磁静环与导磁动环组成的新型轴向永磁轴承,可适应500 r/s、200 ℃工况。浙江工业大学提出轴向永磁轴承+轴向电磁轴承+径向电磁轴承的设计。
1.3 真空与冷却
真空与冷却系统方面,不同用途的飞轮冷却需求大相径庭,总的来说放电功率越大(一般应大于100 kW)、大功率放电时间越长(一般应大于5 min),冷却需求越大。Beacon Power的飞轮能以100 kW放电15 min,采用热管将飞轮产生的热量传递到散热器,保证飞轮正常工作;KTSi对飞轮永磁电机定子进行水冷;Temporal Power飞轮能以500 kW放电6 min,采用电机定子水冷,轴承和转子油冷的冷却方式,在转子下方有一个巨大的冷却罐;Amber Kinetics的飞轮能放电4 h,但功率为8 kW,因此采用被动风冷自然冷却即可;北京泓慧国际能源技术发展有限公司和VYCON的现有产品基本均为柜式不间断电源,放电时间为秒级,冷却需求不大,VYCON通过强化转子辐射散热、增大飞轮壳体肋片散热面积并采用风冷从外壳带走飞轮的热量。清华大学在“飞轮储能用于钻机起升系统能量回收与利用方法”项目中采用充氦气强化转子与外壳换热的方法,氦气压力与大气压相等。
1.4 飞轮储能控制策略
调频用飞轮有充电、放电两种工作状态:充电时,PCS驱动电机,使飞轮转速增加,电能转化为机械能,完成充电过程;放电时,PCS将储能装置出力转化成与电网频率一致的交流电送入电网,机械能向电能转化,进行能量输出。因此,飞轮可以作为负荷从电网充电,又可以向电网放电,具有双向调节能力。 调频控制过程:对于联合调频,电网调度中心发送自动发电控制(automatic generation control,AGC)指令到电厂远动装置(remote terminal units,RTU),RTU转发AGC指令至飞轮储能主单元和电厂分布式控制系统(distributed control system,DCS),对AGC信号进行巴特沃斯低通滤波处理后得到火电参考功率,AGC总功率减去火电应发功率后得到飞轮阵列总功率,阵列中的每一个飞
4
轮对功率进行分摊,完成调频过程。储能系统并网后需要将机组出力与储能系统出力进行合并,并将合并后的出力信号上传电网,作为AGC考核依据。独立调频电站直接接受电网AGC指令调度,能代替目前调频机组的功能,可以布置在新能源场站附近。
以一阶巴特沃斯低通滤波器为例,其传递函数如式(1)所示,ωc为截至频率,T为采样时间。
由塔斯廷(Tustin)近似可将式(1)离散为式(2)并整理出式(3)、式(4),利用式(4)可以对AGC信号进行高低频分解。
2 飞轮储能在电力系统的工程应用 2.1 电网调频
安全可靠的电网运行要求在任意时刻平衡电力供应和电力需求。当供过于求时,频率上升到50 Hz以上,烧毁用电设备,当供不应求时,频率下降到50 Hz以下。为了将电网频率保持在合理的范围内,电网运营商使用辅助服务来平衡发电与用电的偏差。
一次调频是指根据用电负荷频率响应特性,以及电源侧调速器的作用,来削弱电网频率波动的调节方式。
5
飞轮储能在电力系统的工程应用 - 图文



