好文档 - 专业文书写作范文服务资料分享网站

遗传算法优化BP神经网络实现代码【精品毕业设计】(完整版)

天下 分享 时间: 加入收藏 我要投稿 点赞

%读取数据

data=xlsread('data.xls');

%训练预测数据

data_train=data(1:113,:); data_test=data(118:123,:);

input_train=data_train(:,1:9)'; output_train=data_train(:,10)';

input_test=data_test(:,1:9)'; output_test=data_test(:,10)';

%数据归一化

[inputn,mininput,maxinput,outputn,minoutput,maxoutput]=premnmx(input_train,output_train); %对p和t进行字标准化预处理

net=newff(minmax(inputn),[10,1],{'tansig','purelin'},'trainlm');

net.trainParam.epochs=100; net.trainParam.lr=0.1; net.trainParam.goal=0.00001; %net.trainParam.show=NaN

%网络训练

net=train(net,inputn,outputn);

%数据归一化

inputn_test = tramnmx(input_test,mininput,maxinput);

an=sim(net,inputn);

test_simu=postmnmx(an,minoutput,maxoutput);

error=test_simu-output_train;

plot(error)

k=error./output_train

function ret=Cross(pcross,lenchrom,chrom,sizepop,bound) %本函数完成交叉操作

% pcorss input : 交叉概率 % lenchrom input : 染色体的长度 % chrom input : 染色体群

% sizepop input : 种群规模 % ret output : 交叉后的染色体

for i=1:sizepop %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)

% 随机选择两个染色体进行交叉 pick=rand(1,2); while prod(pick)==0 pick=rand(1,2); end

index=ceil(pick.*sizepop); % 交叉概率决定是否进行交叉 pick=rand; while pick==0 pick=rand; end

if pick>pcross continue; end flag=0; while flag==0 % 随机选择交叉位 pick=rand; while pick==0 pick=rand; end

pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同 pick=rand; %交叉开始

v1=chrom(index(1),pos); v2=chrom(index(2),pos);

chrom(index(1),pos)=pick*v2+(1-pick)*v1;

chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束

flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性 flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性 if flag1*flag2==0

flag=0; else flag=1;

end %如果两个染色体不是都可行,则重新交叉 end end ret=chrom;

% 清空环境变量 clc clear %

%% 网络结构建立

%读取数据

load data input output

%节点个数 inputnum=2; hiddennum=5; outputnum=1;

%训练数据和预测数据

input_train=input(1:1900,:)'; input_test=input(1901:2000,:)'; output_train=output(1:1900)'; output_test=output(1901:2000)';

%选连样本输入输出数据归一化

[inputn,inputps]=mapminmax(input_train); [outputn,outputps]=mapminmax(output_train);

%构建网络

net=newff(inputn,outputn,hiddennum);

%% 遗传算法参数初始化

maxgen=10; %进化代数,即迭代次数 sizepop=10; %种群规模

pcross=[0.3]; %交叉概率选择,0和1之间 pmutation=[0.1]; %变异概率选择,0和1之间 %节点总数

38ot302tti5kaxd91bwp423gj8gje700l34
领取福利

微信扫码领取福利

微信扫码分享