19 直线与椭圆的综合
1.直线x+4y+m=0交椭圆+y2=1于A,B两点,若线段AB中点的横坐标
为1,则m=( ).
A.-2 B.-1 C.1 D.2
解析? 因为x+4y+m=0,所以y=-x-.
设A(x1,y1),B(x2,y2),
则 两式相减,
得
- -
=-
=-.
因为AB中点的横坐标为1,所以纵坐标为,将 代入直线
y=- x- ,解得m=-2,故选A.
答案? A
2.已知F是椭圆 + =1(a>b>0)的左焦点,经过原点的直线l与椭圆E
交于P,Q两点,若|PF|=2|QF|,且∠PFQ=120° 则椭圆的离心率为( ).
A. B. C. D.
解析? 在△PQF中,设|PF|=2|QF|=2t,P(x1,y1),Q(-x1,-y1),右焦点为E,由椭圆的对称性,知四边形PFQE是平行四边形,所以在△PEF中,由余弦定理得EF2=5t2-2t2=3t2=4c2.因为PF+QF=2a=3t,所以
t= ,所以e= ,故选C.
答案? C
3.如图,在平面直角坐标系xOy中,F是椭圆 + =1(a>b>0)的右焦点,
直线y=与椭圆交于B,C两点,且∠BFC=90° 则该椭圆的离心率
是 .
解析? 将y=代入椭圆的标准方程,
得 +
=1,所以x=± a,
故B -
,C .
= - - . = - , 又因为F(c,0),所以 =0, · 因为∠BFC=90° 所以 所以
2
- + - =0,
即c-a+=0.
2
将b2=a2-c2代入并化简,得a2=c2,
所以e= =,
2
所以e=(负值舍去). 答案?
4.直线+=1与椭圆+=1相交于A,B两点,该椭圆上有点P,使得△PAB的面积等于3,则这样的点P共有 个.
解析? 设P1(4cos α,3sin α) ,即点P1在第一象限. 设四边形P1AOB的面积为S,
则S= △ + △ =×4×3sin α+×3×4cos α=6(sin
α+cos α)=6 sin ,
∴Smax=6 .∵S△OAB= ×4×3=6, ∴ △ 的最大值为6 -6.
∵6 -6<3,∴点P不可能在直线AB的右上方, ∴在AB的左下方有2个这样的点P. 答案? 2
? 会用点差法解直线与椭圆中的与弦中点有关的问题 能力1
【例1】 已知椭圆C:+ =1(0
圆C于A,B两点,线段AB的中点为M,O为坐标原点,若直线OM的斜率为,则b=( ).
A.1 B. C. D.
解析? 设A(x1,y1),B(x2,y2),M(x0,y0),
则
- - 两式作差得+=0.
因为
- -
=tan =-1,
所以- =0,即=.
由==,解得b2=2,即b= .故选B.
答案? B
点差法:在求解圆锥曲线且题目中已有直线与圆锥曲线相交和被截线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆