七年级上册 第一章 丰富的图形世界
?圆柱:底面是圆面,侧面是曲面1. 柱体??棱体:底面是多边形,侧面是正方形或长方形
?圆锥:底面是圆面,侧面是曲面2. 锥体?,侧面都是三角形?棱锥:底面是多边形
3. 球体:由球面围成的(球面是曲面) 4. 几何图形是由点、线、面构成的。
①几何体与外界的接触面或我们能看到的外表就是几何体的表面。几何的表面有平面和曲面;
②面与面相交得到线; ③线与线相交得到点。
5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱。 .6. 侧棱:相邻两个侧面的交线叫做侧棱,所有侧棱长都相等。 ..
7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。
8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面
图形的形状分别为三边形、四边形、五边形、六边形…… 9. 长方体和正方体都是四棱柱。
10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。 11. 圆锥的表面展开图是由一个圆形和一个扇形连成。
12. 设一个多边形的边数为n(n≥3,且n为整数),从一个顶点出发的对角线有(n-3)条;
可以把n边形成(n-2)个三角形;这个n边形共有13. 圆上两点之间的部分叫做弧,弧是一条曲线。 .
14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。
15. 凸多边形和凹多边形都属于多边形。有弧或不封闭图形都不是多边形。
n(n?3)条对角线。 2第二章 有理数及其运算
数轴的三要素:原点、正方向、单位长度(三者缺一不可)。 任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)
?正整数(如:1,2,3?)??整数?零(0)??负整数(如? :1,2,3?)??有理数?11?正分数(如:,,5.3,3.8?)??23?分数??负分数(如:?1,?1,?2.3,?4.8?)??23?
如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0)
在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。 绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。
正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
?a(a?0)?a(a?0)?|a|?0(a?0) 或 |a|?
??a(a?0)??a(a?0)?越来越大 -3 -2 -1 0 1 2 3 绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;
互为相反数的两数(除0外)的绝对值相等; 任何数的绝对值总是非负数,即|a|≥0
比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值; ②比较两个绝对值的大小;
③根据“两个负数,绝对值大的反而小”做出正确的判断。 绝对值的性质:
①对任何有理数a,都有|a|≥0 ②若|a|=0,则|a|=0,反之亦然 ③若|a|=b,则a=±b
④对任何有理数a,都有|a|=|-a|
有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
③一个数同0相加,仍得这个数。
加法的交换律、结合律在有理数运算中同样适用。
灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加; ②符号相同的数,可以先相加; ③分母相同的数,可以先相加;
④几个数相加能得到整数,可以先相加。
有理数减法法则: 减去一个数,等于加上这个数的相反数。 有理数减法运算时注意两“变”:①改变运算符号; ②改变减数的性质符号(变为相反数)
有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。
有理数的加减法混合运算的步骤:
①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;
②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)
有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
如果两个数互为倒数,则它们的乘积为1。(如:-2与
135 、 与…等) 253乘法的交换律、结合律、分配律在有理数运算中同样适用。
有理数乘法运算步骤:①先确定积的符号; ②求出各因数的绝对值的积。
乘积为1的两个有理数互为倒数。注意: ①零没有倒数
②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。 ③正数的倒数是正数,负数的倒数是负数。
有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。 ②0除以任何非0的数都得0。0不可作为除数,否则无意义。
n个a有理数的乘方 ?????????指数 n a?a?a????a?底数
幂 1
注意:①一个数可以看作是本身的一次方,如5=5;
②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。 乘方的运算性质:
①正数的任何次幂都是正数;
②负数的奇次幂是负数,负数的偶次幂是正数; ③任何数的偶数次幂都是非负数;
④1的任何次幂都得1,0的任何次幂都得0; ⑤-1的偶次幂得1;-1的奇次幂得-1;
⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。 有理数混合运算法则:①先算乘方,再算乘除,最后算加减。 ②如果有括号,先算括号里面的。
a第三章 字母表示数
代数式的概念:
用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。 ... 注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如2?a应写作④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作
137a; 34;a?4
注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如(a?b)平方米
代数式的系数:
代数式中的数字中的数字因数叫做代数式的系数。如3x,4y的系数分别为3,4。 ...... 注意:①单个字母的系数是1,如a的系数是1;
3
②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。ab的系数是1 代数式的项:
代数式6x2?2x?7表示6x、-2x、-7的和,6x、-2x、-7是它的项,其中把不含字母的项叫做常数项
注意:在交待某一项时,应与前面的符号一起交待。 同类项:
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。这两个条件缺一不可;
②同类项与系数无关,与字母的排列顺序无关; ③几个常数项也是同类项。 合差同类项:
把代数式中的同类项合并成一项,叫做合并同类项。 ①合并同类项的理论根据是逆用乘法分配律;
②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 注意:
①如果两个同类项的系数互为相反数,合并同类项后结果为0;
②不是同类项的不能合并,不能合并的项,在每步运算中都要写上; ③只要不再有同类项,就是最后结果,结果还是代数式。 根据去括号法则去括号:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。 根据分配律去括号:
括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。 注意:
①去括号时,要连同括号前面的符号一起去掉;
②去括号时,首先要弄清楚括号前是“+”号还是“-”号; ③改变符号时,各项都变号;不改变符号时,各项都不变号。
2
2
22第四章 平面图形及位置关系
一. 线段、射线、直线
1. 正确理解直线、射线、线段的概念以及它们的区别: 名称 直线 图形 lAB表示方法 直线AB(或BA) 直线l 端点 无端点 长度 无法度量
射线 OMl 射线OM 线段AB(或BA) 线段l 1个 无法度量 线段 AB2个 可度量长度 2. 直线公理:经过两点有且只有一条直线. 二.比较线段的长短
1. 线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离. 2. 比较线段长短的两种方法: ①圆规截取比较法; ②刻度尺度量比较法.
3. 用刻度尺可以画出线段的中点,线段的和、差、倍、分; 用圆规可以画出线段的和、差、倍. 三.角的度量与表示
1. 角:有公共端点的两条射线组成的图形叫做角; 这个公共端点叫做角的顶点; 这两条射线叫做角的边.
A 2. 角的表示法:角的符号为“∠”
①用三个字母表示,如图1所示∠AOB B O 图1 ②用一个字母表示,如图2所示∠b
③用一个数字表示,如图3所示∠1 ④用希腊字母表示,如图4所示∠β 1 β 图4 图3 经过两点有且只有一条直线。
两点之间的所有连线中,线段最短。
两点之间线段的长度,叫做这两点之间的距离。 ........
b 图2
终边 1o=60’ 1’=60”
角也可以看成是由一条射线绕着它的端点旋转而成的。如图5所示:
始边
图5 一条射线绕它的端点旋转,当终边和始边成一条直线时, 所成的角叫做平角。如图6所示: ..
平角 图6
终边继续旋转,当它又和始边重合时, 所成的角叫做周角。如图7所示: ..
周角 图7
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分....线。 .
经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线互相平行。 互相垂直的两条直线的交点叫做垂足。 ..
平面内,过一点有且只有一条直线与已知直线垂直。
如图8所示,过点C作直线AB的垂线,垂足为O点,线段CO的长度叫做点到直线的.C....AB...距离。 ..
O 图8 C A B