武明静 等
[4] Gruner, G. (1998) Millimeter and Sub-Millimeter Wave Spectroscopy of Solids. Applied Physics, 74, 51-109.
https://doi.org/10.1007/BFb0103417
[5] Bllattaeharjee, S., Kory, C.L. and Lee, W.J. (2002) Comprehensive Simulation of Compact THz Radiation Sources
Using Microfabricated Folded Waveguide TWTS. 2002 IEEE International Conference on Vacuum Electronics, Mon-terey, CA, 23-25 April 2002, 26-27. [6] Bllattaeharjee S., Booske, J.H., Kory, C.L., et al. (2003) Investigations of Folded Waveguide TWT Oscillators for THz
Radiation. 2003 4th IEEE International Conference on Vacuum Electronics, Seoul, Korea, 28-30 May 2003. [7] Bhattacharjee, S., Booske, J.H., Kory, C.L., et al. (2004) Folded Waveguide Traveling Wave Tube Sources for Tera-hertz Radiation. IEEE Transactions on Plasma Sciences, 32, 1002-1014. https://doi.org/10.1109/TPS.2004.828886 [8] McMillan, R.W., Trussell, C.W., Bohlander, R.A., et al. (1991) An Experimental 225GHz Pulsed Coherent Radar.
IEEE Transactions on Microwave Theory and Techniques, 39, 555-562. https://doi.org/10.1109/22.75300 [9] Dave, B., Peter, H., Mark, H., et al. (2005) Extended Interaction Klystron for Submillimeter Applications. The Joint
30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, Williamsburg, VA, 84. [10] Albert, R., Peter, H., Mark, H., et al. (2006) Extended Interaction Klystron for Submillimeter Applications. 2006 IEEE
International Conference on Vacuum Electronics, Monterey, CA, 25-27 April 2006, 191. [11] Bratman, V.L., Dumesh, B.S. and Fedotov, A.F. (2002) Broadband Orotron Operation at Millimeter and Sub-Millimeter
Waves. International Journal of Infrared and Millimeter Waves, 23, 1595-1601. https://doi.org/10.1109/22.75300 [12] Carr, G.L., Martin, C., Wayne, R., et al. (2002) High-Power Terahertz Radiation from Relativistic Electron. Nature,
420, 153-156. https://doi.org/10.1038/nature01175 [13] Andrews, H.L. and Brau, C.A. (2004) Gain of a Smith-Purcell Free-Electron Laser. Physical Review Special Top-ics-Accelerators and Beams, 7, Article ID: 070701. https://doi.org/10.1103/PhysRevSTAB.7.070701 [14] Doucas, G., Blackmore, V., Ottewell, B., et al. (2006) Longitudinal Electron Bunch Profile Diagnostics at 45 MeV
Using Coherent Smith-Purcell Radiation. Physical Review Special Topics-Accelerators and Beams, 9, Article ID: 092801. https://doi.org/10.1103/PhysRevSTAB.9.092801 [15] Shin, Y., So, J., Jang, K., et al. (2007) Evanescent Tunneling of an Effective Surface Plasmon Excited by Convection
Electrons. Physical Review Letters, 99, Article ID: 147402. https://doi.org/10.1103/PhysRevLett.99.147402 [16] Korbly, S.E., Kesar, A.S., Sirigiri, J.R. and Temkin, R.J. (2005) Observation of Frequency-Locked Coherent Terahertz
Smith-Purcell Radiation. Physical Review Letters, 94, Article ID: 054803. https://doi.org/10.1103/PhysRevLett.94.054803 [17] Smith, S.J. and Purcell, E.M. (1953) Visible Light from Localized Surface Charges Moving across a Grating. Physical
Review, 92, 1069. https://doi.org/10.1103/PhysRev.92.1069 [18] Estakhri, N.M., Edwards, B. and Engheta, N. (2019) Inverse-Designed Metastructures that Solve Equations. Science,
363, 1333-1338. https://doi.org/10.1126/science.aaw2498 [19] Lee, I.-H., Yoo, D., Avouris, P., Low, T. and Oh, S.-H. (2019) Graphene Acoustic Plasmon Resonator for Ultrasensi-tive Infrared Spectroscopy. Nature Nanotechnology, 14, 313-319. https://doi.org/10.1038/s41565-019-0363-8 [20] Liang, Y., Du, Y., Su, X., et al. (2018) Observation of Coherent Smith-Purcell and Transition Radiation Driven by
Single Bunch and Micro-Bunched Electron Beams. Applied Physics Letters, 112, Article ID: 053501. https://doi.org/10.1063/1.5009396 [21] Zhang, H., Konoplev, I.V., Lancaster, A.J., et al. (2017) Non-Destructive Measurement and Monitoring of Separation
of Charged Particle Micro-Bunches. Applied Physics Letters, 111, Article ID: 043505. https://doi.org/10.1063/1.4996180 [22] Urata, J., Goldstein, M., Kimmitt, M.F., et al. (1998) Superradiant Smith-Purcell Emission. Physical Review Letters, 80,
516-519. https://doi.org/10.1103/PhysRevLett.80.516 [23] Taga, S., Inafune, K. and Sano, E. (2007) Analysis of Smith-Purcell Radiation in Optical Region. Optics Express, 15,
16222-16229. https://doi.org/10.1364/OE.15.016222 [24] Zhang, P., Zhang, Y. and Tang, M. (2017) Enhanced THz Smith-Purcell Radiation Based on the Grating Grooves with
Holes Array. Optics Express, 25, 10901-10910. https://doi.org/10.1364/OE.25.010901 [25] Zhan, T., Han, D., Hu, X., et al. (2014) Tunable Terahertz Radiation from Graphene Induced by Moving Electrons.
Physical Review B, 89, Article ID: 245434. https://doi.org/10.1103/PhysRevB.89.245434 [26] Liu, S., Zhang, C., Hu, M., et al. (2014) Coherent and Tunable Terahertz Radiation from Graphene Surface Plasmon
Polaritons Excited by an Electron Beam. Applied Physics Letters, 104, 1-5. https://doi.org/10.1063/1.4879017
DOI: 10.12677/mp.2020.103004
33
现代物理
武明静 等
[27] Zhang, H., Konoplev, I., Doucas, G., et al. (2018) Concept of a Tunable Source of Coherent THz Radiation Driven by
a Plasma Modulated Electron Beam. Physics of Plasmas, 25, Article ID: 043111. https://doi.org/10.1063/1.5017551 [28] Liu, L., Chang, H., Zhang, C., et al. (2017) Terahertz and Infrared Smith-Purcell Radiation from Babinetmeta Surfaces:
Loss and Efficiency. Physical Review B, 96, Article ID: 165435. https://doi.org/10.1103/PhysRevB.96.165435 [29] Zhang, P., Wang, L., Zhang, Y., Aimidula, A. and Tang, M. (2019) Intensive Vertical Orientation Smith-Purcell Radi-ation from the 2D Well-Array Metasurface. Optics Express, 27, 3952-3962. https://doi.org/10.1364/OE.27.003952 [30] Lan, Y., Chen, J. and Chen, C. (2019) Surface Plasmons Manipulated Smith-Purcell Radiation on Yagi-Uda Nanoan-tenna Arrays. Optics Express, 27, 32567-32577. https://doi.org/10.1364/OE.27.032567 [31] Su, Z., Cheng, F., Li, L. and Liu, Y. (2019) Complete Control of Smith-Purcell Radiation by Graphene Metasurfaces.
ACS Photonics, 6, 1947-1954. https://doi.org/10.1021/acsphotonics.9b00251 [32] Shin, Y.M., So, J.K., Jang, K.H., Won, J.H., Srivastava, A. and Park, G.S. (2007) Superradiant Terahertz Smith-Purcell
Radiation from Surface Plasmon Excited by Counterstreaming Electron Beams. Applied Physics Letters, 90, Article ID: 031502. https://doi.org/10.1063/1.2432270 [33] Hoang, P.D., Andonian, G., Gadjev, I., Naranjo, B., Sakai, Y., Sudar, N., Williams, O., Fedurin, M., Kusche, K.,
Swinson, C., Zhang, P. and Rosenzweig, J.B. (2018) Experimental Characterization of Electron-Beam-Driven Wake-field Modes in a Dielectric-Woodpile Cartesian Symmetric Structure. Physical Review Letters, 120, Article ID: 164801. https://doi.org/10.1103/PhysRevLett.120.164801 [34] Okajima, A. and Matsui, T. (2014) Electron-Beam Induced Terahertz Radiation from Graded Metallic Grating. Optics
Express, 22, 17490-17496. https://doi.org/10.1364/OE.22.017490 [35] Zhang, P., Zhang, Y., Hu, M., et al. (2012) Diffraction Radiation of a Sub-Wavelength Hole Array with Dielectric Me-dium Loading. 2012 International Conference on Infrared, Millimeter and Terahertz Waves, Wollongong, Australia, September 2012. https://doi.org/10.1109/IRMMW-THz.2012.6380342 [36] Lin, D., Fan, P., Hasman, E. and Brongersma, M.L. (2014) Dielectric Gradient Metasurface Optical Elements. Science,
345, 298-302. https://doi.org/10.1126/science.1253213 [37] Wen, D., Chen, S., Yue, F., Chan, K., Chen, M., Ardron, M. and Li, G. (2016) Metasurface Device with Helici-ty-Dependent Functionality. Advanced Optical Materials, 4, 321-327. https://doi.org/10.1002/adom.201500498 [38] Liu, L., Chang, H., Zhang, C., Song, Y. and Hu, X. (2017) Terahertz and Infrared Smith-Purcell Radiation from Babi-netmetasurfaces: Loss and Efficiency. Physical Review B, 96, Article ID: 165435. https://doi.org/10.1103/PhysRevB.96.165435 [39] Song, Y., Du, J., Jiang, N., Liu, L. and Hu, X. (2018) Efficient Terahertz and Infrared Smith-Purcell Radiation from
Metal-Slot Metasurfaces. Optics Letters, 43, 3858-3861. https://doi.org/10.1364/OL.43.003858
DOI: 10.12677/mp.2020.103004
34
现代物理