好文档 - 专业文书写作范文服务资料分享网站

全等三角形经典模型总结 

天下 分享 时间: 加入收藏 我要投稿 点赞

全等三角形相关模型总结

一、角平分线模型

(一)角平分线的性质模型

辅助线:过点G作GE⊥射线AC

A、例题

1、如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB的距离是cm.

2、如图,已知,∠1=∠2,∠3=∠4,求证:AP平分∠BAC.

B、模型巩固

1、如图,在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.

1

(二)角平分线+垂线,等腰三角形必呈现 A、例题

辅助线:延长ED交射线OB于F 辅助线:过点E作EF∥射线OB 例1、如图,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F . 求证:BE?1(AC?AB). 2

例2、如图,在△ABC中,∠BAC的角平分线AD交BC于点D,且AB=AD,作CM⊥AD交AD的延长线于M. 求证:AM?1(AB?AC). 2

2

(三)角分线,分两边,对称全等要记全

两个图形飞辅助线都是在射线ON上取点B,使OB=OA,从而使△OAC≌△OBC . A、例题

1、如图,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ .

2、如图,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由 .

3

B、模型巩固

1、在△ABC中,AB>AC,AD是∠BAC的平分线,P是线段AD上任意一点(不与A重合). 求证:AB-AC>PB-PC .

2、如图,△ABC中,AB=AC,∠A=100°,∠B的平分线交AC于D, 求证:AD+BD=BC .

3、如图,△ABC中,BC=AC,∠C=90°,∠A的平分线交BC于D, 求证:AC+CD=AB .

4

二、等腰直角三角形模型

(一)旋转中心为直角顶点,在斜边上任取一点的旋转全等:

操作过程:

(1)将△ABD逆时针旋转90°,得△ACM ≌ △ABD,从而推出△ADM为等腰直角三角形. (2)辅助线作法:过点C作MC⊥BC,使CM=BD,连结AM.

(二)旋转中心为斜边中点,动点在两直角边上滚动的旋转全等:

操作过程:连结AD.

(1)使BF=AE(或AF=CE),导出△BDF ≌ △ADE. (2)使∠EDF+∠BAC=180°,导出△BDF ≌ △ADE.

A、例题 1、如图,在等腰直角△ABC中,∠BAC=90°,点M、N在斜边BC上滑动,且∠MAN=45°,试探究 BM、MN、CN之间的数量关系.

5

全等三角形经典模型总结 

全等三角形相关模型总结一、角平分线模型(一)角平分线的性质模型辅助线:过点G作GE⊥射线ACA、例题1、如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB的距离是cm.2、如图,已知,∠1=∠2,∠3=∠4,求证:AP
推荐度:
点击下载文档文档为doc格式
36i4791mgj2r4yi9c8hj79c964hjsm00lie
领取福利

微信扫码领取福利

微信扫码分享