的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。 朴素贝叶斯模型: ----
Vmap=arg max P( Vj | a1,a2...an) Vj属于V集合
其中Vmap是给定一个example,得到的最可能的目标值. 其中a1...an是这个example里面的属性.
这里面,Vmap目标值,就是后面计算得出的概率最大的一个.所以用max 来表示 ----
贝叶斯公式应用到 P( Vj | a1,a2...an)中.
可得到 Vmap= arg max P(a1,a2...an | Vj ) P( Vj ) / P (a1,a2...an) 又因为朴素贝叶斯分类器默认a1...an他们互相独立的.
所以P(a1,a2...an)对于结果没有用处. [因为所有的概率都要除同一个东西之后再比较大小,最后结果也似乎影响不大]
可得到Vmap= arg max P(a1,a2...an | Vj ) P( Vj ) 然后
\朴素贝叶斯分类器基于一个简单的假定:给定目标值时属性之间相互条件独立。换言之。该假定说明给定实力的目标值情况下。观察到联合的a1,a2...an的概率正好是对每个单独属性的概率乘积: P(a1,a2...an | Vj ) = Π i P( ai| Vj ) ....
朴素贝叶斯分类器:Vnb =arg max P( Vj ) Π i P ( ai | Vj ) \
Vnb = arg max P ( Vj )
此处Vj ( yes | no ),对应天气的例子。 数据挖掘十大经典算法(10) CART 如果一个人必须去选择在很大范围的情形下性能都好的、同时不需要应用开发者付出很多的努力并且易于被终端用户理解的分类技术的话,那么 Brieman, Friedman, Olshen和Stone(1984)提出的分类树方法是一个强有力的竞争者。我们将首先讨论这个分类的过程,然后在后续的节中我们将展示这个过程是如何被用来预测连续的因变量。Brieman等人用来实现这些过程的程序被称为分类和回归树(CART, Classification and Regression Trees)方法。
分类树 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。
递归划分
让我们用变量y表示因变量(分类变量),用x1, x2, x3,...,xp表示自变量。通过递归的方式把关于变量x的p维空间划分为不重叠的矩形。这个划分是以递归方式完成的。首先,一个自变量被选择,比如 xi和xi的一个值si,比方说选择si把p维空间为两部分:一部分是p维的超矩形,其中包含的点都满足xi<=si,另一个p维超矩形包含所xi>si。接着,这两部分中的一个部分通过选择一个变量和该变量的划分值以相似的方式被划分。这导致了三个矩形区
域(从这里往后我们把超矩形都说成矩形)。随着这个过程的持续,我们得到的矩形越来越小。这个想法是把整个x空间划分为矩形,其中的每个小矩形都尽可能是同构的或―纯‖的。―纯‖ 的意思是(矩形)所包含的点都属于同一类。我们认为包含的点都只属于一个类(当然,这不总是可能的,因为经常存在一些属于不同类的点,但这些点的自变量有完全相同的值)。 数据挖掘十大经典算法
国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.
不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。
1. C4.5
C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝;
3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
2. The k-means algorithm 即K-Means算法
k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。
3. Support vector machines
支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。
4. The Apriori algorithm
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持
度大于最小支持度的项集称为频繁项集,简称频集。
5. 最大期望(EM)算法
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。
6. PageRank
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里?佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的―链接流行度‖——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
7. AdaBoost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。
8. kNN: k-nearest neighbor classification
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
9. Naive Bayes
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。
10. CART: 分类与回归树
CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。 数据挖掘十大经典算法(1)C4.5
机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。
从数据产生决策树的机器学习技术叫做决策树学习, 通俗说就是决策树。
决策树学习也是数据挖掘中一个普通的方法。在这里,每个决策树都表述了一种树型结构,他由他的分支来对该类型的对象依靠属性进行分类。每个决策树可以依靠对源数据库的分割进行数据测试。这个过程可以递归式的对树进行修剪。当不能再进行分割或一个单独的类可以被应用于某一分支时,递归过程就完成了。另外,随机森林分类器将许多决策树结合起来以提升分类的正确率。
决策树同时也可以依靠计算条件概率来构造。决策树如果依靠数学的计算方法可以取得更加理想的效果。
决策树是如何工作的
决策树一般都是自上而下的来生成的。 选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。 从根到叶子节点都有一条路径,这条路径就是一条―规则‖。 决策树可以是二叉的,也可以是多叉的。 对每个节点的衡量:
1) 通过该节点的记录数
2) 如果是叶子节点的话,分类的路径 3) 对叶子节点正确分类的比例。
有些规则的效果可以比其他的一些规则要好。
由于ID3算法在实际应用中存在一些问题,于是Quilan提出了C4.5算法,严格上说C4.5只能是ID3的一个改进算法。相信大家对ID3算法都很.熟悉了,这里就不做介绍。 C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
2) 在树构造过程中进行剪枝;
3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。
来自搜索的其他内容:
C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. 分类决策树算法是从大量事例中进行提取分类规则的自上而下的决策树. 决策树的各部分是: 根: 学习的事例集. 枝: 分类的判定条件. 叶: 分好的各个类. §4.3.2 ID3算法 1.概念提取算法CLS
1) 初始化参数C={E},E包括所有的例子,为根.
2) IF C中的任一元素e同属于同一个决策类则创建一个叶子 节点YES终止.
ELSE 依启发式标准,选择特征Fi={V1,V2,V3,...Vn}并创建 判定节点
划分C为互不相交的N个集合C1,C2,C3,...,Cn; 3) 对任一个Ci递归. 2. ID3算法
1) 随机选择C的一个子集W (窗口).
2) 调用CLS生成W的分类树DT(强调的启发式标准在后). 3) 顺序扫描C搜集DT的意外(即由DT无法确定的例子). 4) 组合W与已发现的意外,形成新的W. 5) 重复2)到4),直到无例外为止.
启发式标准:
只跟本身与其子树有关,采取信息理论用熵来量度. 熵是选择事件时选择自由度的量度,其计算方法为 P = freq(Cj,S)/|S|; INFO(S)= - SUM( P*LOG(P) ) ; SUM()函数是求j从1到n和. Gain(X)=Info(X)-Infox(X); Infox(X)=SUM( (|Ti|/|T|)*Info(X);
为保证生成的决策树最小,ID3算法在生成子树时,选取使生成的子树的熵(即Gain(S))最小的的特征来生成子树. §4.3.3: ID3算法对数据的要求 1. 所有属性必须为离散量.
2. 所有的训练例的所有属性必须有一个明确的值.
3. 相同的因素必须得到相同的结论且训练例必须唯一. §4.3.4: C4.5对ID3算法的改进:
1. 熵的改进,加上了子树的信息.
Split_Infox(X)= - SUM( (|T|/|Ti| ) *LOG(|Ti|/|T|) );