九年级数学旋转几何综合专题练习(解析版)
一、初三数学 旋转易错题压轴题(难)
1.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G为FC的中点,连接GD,ED.
(1)如图①,E在AB上,直接写出ED,GD的数量关系.
(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.
(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.
【答案】(1)DE=2DG;(2)成立,理由见解析;(3)DE的长为42或32. 【解析】 【分析】
(1)根据题意结论:DE=2DG,如图1中,连接EG,延长EG交BC的延长线于M,连接DM,证明△CMG≌△FEG(AAS),推出EF=CM,GM=GE,再证明△DCM≌△DAE(SAS)即可解决问题;
(2)如图2中,结论成立.连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R,其证明方法类似;
(3)由题意分两种情形:①如图3-1中,当E,F,C共线时.②如图3-3中,当E,F,C共线时,分别求解即可. 【详解】
解:(1)结论:DE=2DG.
理由:如图1中,连接EG,延长EG交BC的延长线于M,连接DM.
∵四边形ABCD是正方形,
∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°, ∵∠AEF=∠B=90°,
∴EF∥CM, ∴∠CMG=∠FEG, ∵∠CGM=∠EGF,GC=GF, ∴△CMG≌△FEG(AAS), ∴EF=CM,GM=GE, ∵AE=EF, ∴AE=CM,
∴△DCM≌△DAE(SAS), ∴DE=DM,∠ADE=∠CDM, ∴∠EDM=∠ADC=90°, ∴DG⊥EM,DG=GE=GM, ∴△EGD是等腰直角三角形, ∴DE=2DG.
(2)如图2中,结论成立.
理由:连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.
∵EG=GM,FG=GC,∠EGF=∠CGM, ∴△CGM≌△FGE(SAS), ∴CM=EF,∠CMG=∠GEF, ∴CM∥ER, ∴∠DCM=∠ERC, ∵∠AER+∠ADR=180°, ∴∠EAD+∠ERD=180°, ∵∠ERD+∠ERC=180°, ∴∠DCM=∠EAD, ∵AE=EF, ∴AE=CM,
∴△DAE≌△DCM(SAS), ∴DE=DM,∠ADE=∠CDM, ∴∠EDM=∠ADC=90°, ∵EG=GM, ∴DG=EG=GM,
∴△EDG是等腰直角三角形,
∴DE=2DG.
(3)①如图3﹣1中,当E,F,C共线时,
在Rt△ADC中,AC=AD2?CD2=52?52=52,
在Rt△AEC中,EC=AC2?AE2=(52)2?12=7, ∴CF=CE﹣EF=6,
1CF=3, 2∵∠DGC=90°,
∴CG=
∴DG=CD2?CG2=52?32=4, ∴DE=2DG=42.
②如图3﹣3中,当E,F,C共线时,同法可得DE=32.
综上所述,DE的长为42或32. 【点睛】
本题属于四边形综合题,考查正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
2.已知:如图①,在矩形ABCD中,AB?3,AD?4,AE?BD,垂足是E.点F是点
E关于AB的对称点,连接AF、BF.