课时作业(二十九) 同角三角函数的基本关系
[练基础]
1.已知α是第二象限角,且cos α=-12
13
,则tan α的值是( )
A.121213 B.-13 C.512 D.-512
2.化简:1-2sin 50°cos 50°的结果为( ) A.sin 50°-cos 50° B.cos 50°-sin 50° C.sin 50°+cos 50° D.-sin 50°-cos 50°
3.已知sin α=5
5
,则sin4α-cos4α的值为( )
A.-15 B.-35
C.135 D.5
4.若α为第三象限角,则cos α1-sin2α+2sin α
1-cos2α
的值为________.5.已知tan α=3,则sin2α-2sin αcos α=________.
6.求证:sin αcos 1-cos α·αtan α
1+cos α
=1.
[提能力]
7.(多选)已知θ∈(0,π),sin θ+cos θ=1
5
,则下列结论正确的是( A.θ∈?π?2,π?? B.cos θ=-35 C.tan θ=-37
4 D.sin θ-cos θ=5
)
8.若θ为第四象限角,则
1-cos θ
-
1+cos θ1+cos θ
可化简为( )
1-cos θ
2
A.2tan θ B.- tan θ2
C.-2tan θ D. tan θπ1
9.已知- 25 (1)sin x-cos x; 1 (2)2. cosx-sin2x [战疑难] 10.设α是第三象限,问是否存在实数m,使得sin α,cos α是关于x的方程8x2+6mx+2m+1=0的两个根?若存在,求出实数m;若不存在,请说明理由. 课时作业(二十九) 同角三角函数的基本关系 1.解析:∵α为第二象限角,∴sin α=1-cos2α=?12?1-?-13?2??5135sin α5=13,∴tan α=cos α=12=-12. -13答案:D 2.解析:原式=sin250°+cos250°-2sin 50°cos 50°=?sin 50°-cos 50°?2=|sin 50°-cos 50°|=sin 50°-cos 50°. 答案:A 5143.解析:∵sin α=5,∴cos2α=1-sin2α=1-5=5,∴sin4α-cos4α1432222=(sinα+cosα)(sinα-cosα)=5-5=-5. 答案:B cos α4.解析:∵α为第三象限角,∴sin α<0,cos α<0,∴原式=|cos α|2sin αcos α2sin α+|sin α|=+=-1-2=-3. -cos α-sin α答案:-3 22sinα-2sin αcos αtanα-2tan α25.解析:sinα-2sin αcos α===sin2α+cos2αtan2α+19-63=. 9+1103答案:10 sin αcos αtan α6.证明:· 1-cos α1+cos αsin αcos α·cos αsin α=· 1-cos α1+cos αsin αsin α=· 1-cos α1+cos αsin2αsin2α===1. 1-cos2αsin2α17.解析:∵sin θ+cos θ=5 ① 1∴(sin θ+cos θ)=25, 1即1+2sin θcos θ=25, 24∴2sin θcos θ=-25, 2?π?∵θ∈(0,π),∴sin θ>0,cos θ<0,∴θ∈?2,π?, ??49∴(sin θ-cos θ)=1-2sin θcos θ=25, 7∴sin θ-cos θ=5 ② 43由①②得sin θ=5,cos θ=-5, sin θ4∴tan θ=cos θ=-3. 故选ABD. 答案:ABD 8.解析:∵θ为第四象限角,则sin θ<0,且0