绝密★启用前 试卷类型:A
2014年辽宁省高考数学试卷(理科)
一、选择题:本大题共??小题,每小题?分,在每小题给出的四个选项中,只有一项是符合题目要求的.
?.(?分)已知全集???,??????≤??,??????≥??,则集合??
(?∪?)?( )
?.????≥????.????≤????.????≤?≤????.????<?<??
?.(?分)设复数?满足(?﹣??)(?﹣?)??,则??( ) ?.??????.?﹣????.??????.?﹣?? ?.(?分)已知??
,??????,?????
,则( )
?.?>?>???.?>?>???.?>?>???.?>?>? ?.(?分)已知?,?表示两条不同直线,?表示平面,下列说法正确的是( )
?.若?∥?,?∥?,则?∥???.若?⊥?,???,则?⊥? ?.若?⊥?,?⊥?,则?∥???.若?∥?,?⊥?,则?⊥? ?.(?分)设,,是非零向量,已知命题?:若???,???,则???;命题?:若∥,∥,则∥,则下列命题中真命题是( )
?.?∨???.?∧???.(¬?)∧(¬?)??.?∨(¬?)
?.(?分)?把椅子排成一排,?人随机就座,任何两人不相邻的坐法种数为( )
?.?????.?????.????.??
?.(?分)某几何体三视图如图所示,则该几何体的体积为( )
.1
绝密★启用前 试卷类型:A
?.?﹣????.?﹣???.?﹣??.?﹣
?.(?分)设等差数列????的公差为?,若数列?( )
?.?<???.?>???.???<???.???>? ?.(?分)将函数??????(???得图象对应的函数( )
?.在区间?增
?.在区间?﹣增
,
?上单调递减??.在区间?﹣
,
?上单调递减??.在区间?
)的图象向右平移
?为递减数列,则
个单位长度,所
,?上单调递
,?上单调递
10.(5分)已知点A(﹣2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为( ) A. B. C. D.
11.(5分)当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是( )
A.[﹣5,﹣3] B.[﹣6,﹣] C.[﹣6,﹣2] D.[﹣4,﹣3] 12.(5分)已知定义在[0,1]上的函数f(x)满足: ①f(0)=f(1)=0;
.2
绝密★启用前 试卷类型:A
②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|<|x﹣y|.
若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为( ) A. B. C.
二、填空题:本大题共4小题,每小题5分。考生根据要求作答. 13.(5分)执行如图的程序框图,若输入x=9,则输出y= .
D.
14.(5分)正方形的四个顶点A(﹣1,﹣1),B(1,﹣1),C(1,1),D(﹣1,1)分别在抛物线y=﹣x2和y=x2上,如图所示,若将一个质点随机投入正方形ABCD中,则质点落在图中阴影区域的概率是 .
15.(5分)已知椭圆C:+=1,点M与C的焦点不重合,若M关于C的
焦点的对称点分别为A、B,线段MN的中点在C上,则|AN|+|BN|= . 16.(5分)对于c>0,当非零实数a,b满足4a2﹣2ab+4b2﹣c=0且使|2a+b|最大时,﹣+的最小值为 .
.3
绝密★启用前 试卷类型:A
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(12分)在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c,已知?
=2,cosB=,b=3,求:
(Ⅰ)a和c的值; (Ⅱ)cos(B﹣C)的值.
18.(12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;
(Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).
19.(12分)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点. (Ⅰ)求证:EF⊥BC;
(Ⅱ)求二面角E﹣BF﹣C的正弦值.
20.(12分)圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当
.4
绝密★启用前 试卷类型:A
该三角形面积最小时,切点为P(如图),双曲线C1:率为
.
﹣=1过点P且离心
(Ⅰ)求C1的方程;
(Ⅱ)若椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.
21.(12分)已知函数
f(x)=(cosx﹣x)(π+2x)﹣(sinx+1) g(x)=3(x﹣π)cosx﹣4(1+sinx)ln(3﹣证明:
(Ⅰ)存在唯一x0∈(0,(Ⅱ)存在唯一x1∈(
四、请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.选修4-1:几何证明选讲.
22.(10分)如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F. (Ⅰ)求证:AB为圆的直径; (Ⅱ)若AC=BD,求证:AB=ED.
),使f(x0)=0;
)
,π),使g(x1)=0,且对(Ⅰ)中的x0,有x0+x1<π.
.5