好文档 - 专业文书写作范文服务资料分享网站

小波分析及其应用(精品教程)

天下 分享 时间: 加入收藏 我要投稿 点赞

第八章 小波分析理论及应用

表8.6-2 IEEE标准测试图压缩实验结果

比特/象素 常规小波变换 Lena图 SPIHT 无算术编码 SPIHT 有算术编码 0.08 0.125 0.25 0.5 1 2 4 28.60 30.23 33.17 36.18 39.42 43.71 53.32 28.86 30.72 33.70 36.84 39.98 44.34 54.13 29.35 31.10 34.11 37.21 40.41 45.07 55.86 观察表8.6-1和表8.6-2可得如下结论:对于所有种类的图像,SPIHT加了算术编码后比不加算术编码时峰值信噪比(PSNR)改善约为0.3dB~0.7dB;对于SAR图像,SPIHT不加算术编码时的PSNR与常规小波变换编码方法的PSNR相当;对于IEEE标准测试图Lena,SPIHT不加算术编码时的PSNR就优于常规小波变换编码方式。以上结果一方面说明了SPIHT算法的有效性,另一方面也说明了SAR图像不同于自然图像的特点。 SPIHT算法把量化过程隐含在编码过程中,且不要进行最优比特分配,运行速度要远快于常规小波变换编码方法,但运行速度与具体机器相关,这里不给出实际数据。

附 录 常用小波变换滤波器系数

1)哈尔小波:{

12,12 }

2)几个Daubechies 滤波器

DB4:{ 0.4829629131445341, 0.8365163037378077, 0.2241438680420134, -0.1294095225512603 } DB6:{ 0.3326705529500825, 0.8068915093110924, 0.4598775021184914,

-0.1350110200102546, -0.0854412738820267, 0.0352262918857095 }

DB8:{ 0.2303778133088964, 0.7148465705529154, 0.6308807679398587,

-0.0279837694168599, -0.1870348117190931, 0.0308413818355607,

0.0328830116668852, -0.0105974017850690 }

3) 7-9 滤波器: 综合滤波器:

{ -6.453888262893856e-02, -4.068941760955867e-02, 4.180922732222124e-01, 7.884856164056651e-01, 4.180922732222124e-01, -4.068941760955867e-02, -6.453888262893856e-02 } 分析滤波器:

{ 3.782845550699535e-02, -2.384946501937986e-02, -1.106244044184226e-01, 3.774028556126536e-01, 8.526986790094022e-01, 3.774028556126537e-01, -1.106244044184226e-01, -2.384946501937986e-02, 3.782845550699535e-02 }

4)取自文献[18]的滤波器 Villa1分析滤波器:

46

第八章 小波分析理论及应用

{ 3.782845550699535e-02, -2.384946501937986e-02, -1.106244044184226e-01, 3.774028556126536e-01, 8.526986790094022e-01, 3.774028556126537e-01, -1.106244044184226e-01, -2.384946501937986e-02, 3.782845550699535e-02} Villa1综合滤波器

{ -6.453888262893856e-02, -4.068941760955867e-02, 4.180922732222124e-01, 7.884856164056651e-01, 4.180922732222124e-01, -4.068941760955867e-02, -6.453888262893856e-02}

Villa2分析滤波器:

{ -8.472827741318157e-03, 3.759210316686883e-03, 4.728175282882753e-02, -3.347508104780150e-02, -6.887811419061032e-02, 3.832692613243884e-01, 7.672451593927493e-01, 3.832692613243889e-01, -6.887811419061045e-02, -3.347508104780156e-02, 4.728175282882753e-02, 3.759210316686883e-03, -8.472827741318157e-03} Villa2综合滤波器:

{ 1.418215589126359e-02, 6.292315666859828e-03, -1.087373652243805e-01, -6.916271012030040e-02, 4.481085999263908e-01, 8.328475700934288e-01,

4.481085999263908e-01, -6.916271012030040e-02, -1.087373652243805e-01, 6.292315666859828e-03, 1.418215589126359e-02}

Villa3分析滤波器:

{ -1.290777652578771e-01, 4.769893003875977e-02, 7.884856164056651e-01, 7.884856164056651e-01, 4.769893003875977e-02, -1.290777652578771e-01} Villa3综合滤波器:

{ 1.891422775349768e-02, 6.989495243807747e-03, -6.723693471890128e-02, 1.333892255971154e-01, 6.150507673110278e-01, 6.150507673110278e-01, 1.333892255971154e-01, -6.723693471890128e-02, 6.989495243807747e-03, 1.891422775349768e-02}

Villa4分析滤波器:

{ -1.767766952966369e-01, 3.535533905932738e-01, 1.060660171779821e+00, 3.535533905932738e-01, -1.767766952966369e-01} Villa4综合滤波器:

{ 3.535533905932738e-01, 7.071067811865476e-01, 3.535533905932738e-01}

Villa5分析滤波器:

{ 7.071067811865476e-01, 7.071067811865476e-01} Villa5综合滤波器:

{ -8.838834764831845e-02, 8.838834764831845e-02, 7.071067811865476e-01, 7.071067811865476e-01, 8.838834764831845e-02, -8.838834764831845e-02}

Villa6分析滤波器:

{ 3.314563036811943e-02, -6.629126073623885e-02, -1.767766952966369e-01, 4.198446513295127e-01, 9.943689110435828e-01, 4.198446513295127e-01, -1.767766952966369e-01, -6.629126073623885e-02, 3.314563036811943e-02} Villa6综合滤波器:

{ 3.535533905932738e-01, 7.071067811865476e-01, 3.535533905932738e-01}

47

第八章 小波分析理论及应用

参考文献:

[1] 郑君里等,信号与系统(上册),北京:高等教育出版社,1981。

[2] [美]崔锦泰著,程正兴译,小波分析导论,西安:西安交通大学出版社,1995。 [3] [法]Y. 迈耶著,尤众译,小波与算子,北京:世界图书出版社,1992。

[4] Sweldens, W., The lifting scheme:A custom-design construction of bi-orthogonal

wavelets, Appl. Comput., Harmon. Anal, 1996, Vol. 3, No. 2, pp.186-200.

[5] Sweldens, W., The lifting scheme: A construction of second generation wavelets, SIAM

J. Math. Anal., 1997.

[6] Daubechies, I. And Sweldens, W., Factoring wavelet transforms into lifting steps, J.

Fourier Anal. Appl., 1998, Vol. 4, No. 3, pp.247-269.

[7] 刘贵中、邸双亮,小波分析及其应用,西安:西安电子科技大学出版社,1992。 [8] 程正兴,小波分析算法与应用,西安:西安交通大学出版社,1998。

[9] 李世雄、刘家琦编著,小波变换和反演数据基础,北京:地质出版社,1994。 [10] Daubechies, I., Orthonormal bases of compactly supported wavelets, Communications

on Pure and Applied mathematics, 1988, Vol. 41, No. 11, pp.909-996.

[11] Cohen, A, Daubechies, I., and Feanvean, J., Bi-orthogonal bases of compactly supported

wavelets. Comm.. Pure Appl. Math., 1992, Vol. 45, pp.485-560.

[12] Mallat, S., A theory for multiresolution signal decomposition:the wavelet representation,

IEEE Trans. Pattern Analysis and machine Intelligence, 1989, Vol. 11, pp. 674-693.

[13] Calderbank, A.R., Daubechies, I., Sweldens, W., Yeo,Boon-Lock, Lossless image

compression using integer to integer wavelet transforms, AT&T-Labs, Tech. Rep.,1996. [14] Unser, M., Approximation power of bi-orthogonal wavelet expansions, IEEE Trans. on

signal Processing, 1996, Vol.44, pp.519-527.

[15] Rioul,O., Regular wavelets: a discrete-time approach, IEEE Trans. on Signal processing,

1993, Vol. 41, pp.3572-3579.

[16] Antonini, M., et. al., Image coding using wavelet transform, IEEE Trans. Image Proc.,

1992, Vol. 1, pp. 205-220.

[17] Vetterli, M. and Herley, C., Wavelets and filter banks: Theory and design, IEEE Trans.

Acoust. Speech signal proc., 1992, Vol.40, No.9, pp. 2207-2232.

[18] Villasenor, J., Belzer, B., Liao, J., Wavelet Filter Evaluation for Image Compression,

IEEE Transactions on Image Processing, 1995, Vol. 2, pp. 1053-1060.

[19] Gish, H. and Pierce, J.N., Asymptotically efficient quantizing, IEEE Trans. Info. Theory,

1968, Vol. 14, pp.676-683.

[20] 高文,多媒体数据压缩技术,北京:电子工业出版社,1994。

[21] Shapiro, J., Embedded image coding using zerotrees of wavelet coefficients, IEEE

Trans. on Signal Processing, 1993, Vol. 41, pp. 3445-3462.

[22] Said, A. and Pearlman, W.A., A new fast and efficient image codec based on set

partitioning in hierarchical trees, IEEE Trans. on Circuits and Systems for Video Technology, 1996, Vol. 6, pp. 243-250.

48

小波分析及其应用(精品教程)

第八章小波分析理论及应用表8.6-2IEEE标准测试图压缩实验结果比特/象素常规小波变换Lena图SPIHT无算术编码SPIHT有算术编码0.080.1250.250.512428.6030.2333.1736.1839.4243.7153.3228.8630.7233.7036.8439.9844.
推荐度:
点击下载文档文档为doc格式
32qqy1voya4bptb10m3p
领取福利

微信扫码领取福利

微信扫码分享