经济数学基础形成性考核册参考答案
一、填空题:
1.0 2.1 3.x?2y?1?0 4.2x 5.?
2二、单项选择:
1.D 2.B 3.B 4.B 5.C 三、计算题: 1、计算极限 (1)
原式?lim(x?1)(x?2)x?1(x?1)(x?1)?limx?2 x?1x?1??12(2). 原式=lim(x-2)(x-3)x?2(x-2)(x-4)
?limx?3 x?2x?4?1
2(3). 原式=lim(1?x?1)(1?x?1)x?0x(1?x?1)
=lim?1x?01?x?1
=?12
1?35 (4).原式=
x?x2=1
3?3x?43x2sin3x (5).原式=33x5limx?0sin5x
5x =35
1
(6). 原式=limx?2
x?2sin(x?2)x?2lim(x?2)x?2 =
sin(x?2)limx?2x?2
= 4
2.(1)lim?f(x)?b,x?0x?0?limf(x)?1
limf(x)?f(0)?1
x?0当 (2).
a?b?1时,有当a?b?1时,有limf(x)?f(0)?1
x?0 函数f(x)在x=0处连续. 3. 计算下列函数的导数或微分
1 xln2a(cx?d)?c(ax?b)ad?bc (2). y?? ?22(cx?d)(cx?d)3?3 (3). y???(3x?5)2
21 (4). y???(ex?xex)
2x1 =?ex?xex
2xy??(eax)?(sinbx?eax(sinbx)? (1).
y??2x?2xln2? (5). ∵
?aeaxsinbx?beaxcosbx
?eax(sinbx?bcosbx)ax ∴dy?e(asinbx?bcosbx)dx 113x (6). ∵y???2ex?x2311x?2ex)dx ∴dy?(2x?x2(7).∵y???sinx?(x)??e?(?x)?
2sinx =??2xe?x
2xsinx?2xe?x)dx ∴dy?(?2xn?1x?cosx?ncosnx (8) y??nsin22 2
(9) y?? =
1x?1?x21x?1?x1x?1?x12?(x?1?x2)? ?(1??x2 =
1?x1?x2?x1?x2)
2 =
1?xcos1x2
11?1y??2?ln2?(cos)??(x2?x6?2)?x(10) 11cos111??2?2xln2?sin??xx2x36x52. 下列各方程中y是x的隐函数,试求y?或dy
(1) 方程两边对x求导:
2x?2y?y??y?xy??3?0 (2y?x)y??y?2x?3
y?2x?3 所以 dy?dx
2y?x (2) 方程两边对x求导:
y)(1?y?)?exy?(y?xy?)?4
xyxy [cos(x?y)?xe]y??4?cos(x?y)?ye
4?cos(x?y)?yexy 所以 y?? xycos(x?y)?xe cos(x? 3.求下列函数的二阶导数:
2x 21?x2(1?x2)?2x?2x2?2x2 y??? ?2222(1?x)(1?x)1131???11 (2) y??(x2?x2)???x2?x2
223?3?51 y???x2?x2
4431 y?(1)???1
44 (1) y??
3
经济数学基础作业2
一、填空题: 1.2x11 ln2?2 2. sinx?c 3. ?F(1?x2)?c 4. 0 5. ?221?x二、单项选择:
1.D 2.C 3.C 4.D 5.B 三、计算题: 1、计算极限
3x(?e)dx 3()x3xe?c?x?c =
3e(ln3?1)lne (1) 原式= (2) 原式=
?(x12?12?2x?x)dx
325432 =2x?x2?x2?c
3512 (3) 原式=?(x?2)dx?x?2x?c
21d(1?2x)1??ln1?2x?c (4) 原式=??21?2x2122 (5) 原式=?2?xd(2?x)
23122 =(2?x)?c
3 (6) 原式=2?sinxdx??2cosx?c
(7) ∵(+) x sinx 2x 2x (+) 0 ?4sin
2xx∴原式=?2xcos?4sin?c
22 (8) ∵ (+) ln(x?1) 1 1 (-) ? x
x?1 (-) 1 ?2cos
4
x?x?1dx
1)dx =xln(x?1)??(1?x?1 =xln(x?1)?x?ln(x?1)?c
∴ 原式=xln(x?1)? 2.计算下列定积分:
(1) 原式=
?12?1(1?x)dx??1(x?1)dx =2?(12x2?x)2591?2?2?21原式=
?2ex(2) 1x2(?x2)d1x 11 =?ex21?e?e2
?3(3) 原式=
ex1x1?lnxd(1?lnx)
=21?lnxe31?2 (4) ∵ (+)x cos2x
(-)1 12sin2x
(+)0 ?14cos2x
∴ 原式=(11?22xsin2x?4cos2x)0
=?114?4??12
(5) ∵ (+) lnx x
(-) 1x x22
∴ 原式=12e1e2xlnx1?2?1xdx
=
e212?4x2e14(e21??1) (6) ∵原式=4??4?x0xedx
又∵ (+)x e?x (-)1 -e?x (+)0 e?x
5