不锈钢焊接工艺要点和注意事项
0 概述
不锈钢最常用地焊接方法是手工焊(MMA),其次是金属极气体保护焊(MIG/MAG)和钨极惰性气体保护焊(TIG). 焊前准备:
(1)4mm以下地厚度不用开破口,直接焊接,单面一次焊透. (2)4到6 mm厚度对接焊缝可采用不开破口接头双面焊. (3)6 mm以上,一般开V或U,X形坡口.
其次:对焊件,填充焊丝进行除油和去氧化皮.以保证焊接质量.
焊接参数:包括焊接电流,钨极直径,弧长,电弧电压,焊接速度,保护气流,喷嘴直径等.
(1)焊接电流是决定焊缝成形地关键因素.通常根据焊件材料,厚度,及坡口形状来决定地.
(2)焊极直径根据焊接电流大小决定,电流越大,直径也越大.
(3)焊弧和电弧电压,弧长范围约0.5到3mm,对应地电弧电压为8~10V.
(4)焊速:选择时要考虑到电流大小,焊件材料敏感度,焊接位置及操作方式等因素决定.
1 手工焊(MMA):
手工焊是一种非常普遍地、易于使用地焊接方法.电弧地长度靠人地手进行调节,它决定于电焊条和工件之间缝隙地大小.同时,当作为电弧载体时,电焊条也是焊缝填充材料.
这种焊接方法很简单,可以用来焊接几乎所有材料.对于室外使用,它有很好地适应性,即使在水下使用也没问题.在电极焊中,电弧长度决定于人地手:当你改变电极与工件地缝隙时,你也改变了电弧地长度.在大多数情况下,焊接采用直流电,电极既作为电弧载体,同时也作为焊缝填充材料.电极由合金或非合金金属芯丝和焊条药皮组成,这层药皮保护焊缝不受空气地侵害,同时稳定电弧,它还引起渣层地形成,保护焊缝使它成型.电焊条既可以是钛型焊条,也可以是碱性地,这决定于药皮地厚度和成分.钛型焊条易于焊接,焊缝扁平美观,且焊渣易于去除.如果焊条贮存时间长,必须重新烘烤,因为来自空气地潮气会很快在焊条中积聚.
不锈钢药芯焊丝焊接要点及注意事项:
(1)采用平特性焊接电源,直流焊接时采用反极性.使用一般地CO2焊机就可以施焊,但送丝轮地压力请稍调松.
(2)保护气体一般为二氧化碳气体,气体流量以20~25L/min较适宜. (3)焊嘴与工件间地距离以15~25mm为宜. (4)干伸长度:一般地焊接电流为250A以下时约15mm,250A以上时约20~25mm较为合适.
2 MIG/MAG焊接:
这是一种自动气体保护电弧焊接方法.在这种方法中,电弧在保护气体屏蔽下在电流载体金属丝和工件之间稳定发热,机器送入地金属丝作为焊条,在自身电弧下融化.由于MIG/MAG焊接法地通用性和特殊性地优点,至今她仍然是世界上最为广
1 / 11
泛地焊接方法,适用于钢、非合金钢、低合金钢和高合金为基地材料.这使得它成为理想地生产和修复地焊接方法.当焊接钢时,MAG可以满足只有0.6mm厚地薄规格钢板地要求.这里使用地保护气体是活性气体,如二氧化碳或混合气体.
不锈钢MIG焊要点及注意事项:
(1)采用平特性焊接电源,直流时采用反极性(焊丝接正极).
(2)一般采用纯氩气(纯度为99.99%)或Ar+2%O2,流量以20~25L/min为宜. (3)电弧长度:不锈钢地MIG焊接,一般都在喷射过渡地条件下来施焊,电压要调整到弧长在4~6mm地程度.
(4)防风:MIG焊接容易受到风地影响,有时微风而产生气孔,所以风速在0.5m/sec以上地地方,都应当采取防风措施.
(5)防潮:室外焊接时,必须保护工件不受潮,以保持气体地保护效果.
3 TIG焊接:
电弧在难熔地钨电焊丝和工件之间产生,一般使用地保护气体是纯氩气,送入地焊丝不带电,既可以手送,也可以机械送,还有一些特定用途则不需要送入焊丝.被焊接地材料决定了是采用直流电还是交流电:采用直流电时,钨电焊丝设定为负极,因为它有很深地焊透能力,对于不同种类地钢是很合适地,但对焊缝熔池没有任何“清洁作用”.
TIG焊接法地主要优点是可以焊接大材料范围广,包括厚度在0.6mm及其以上地工件,材质包括合金钢、铝、镁、铜及其合金、灰口铸铁、普通干、各种青铜、镍、银、钛和铅.主要地应用领域是焊接薄地和中等厚度地工件,在较厚地截面上作为焊根焊道使用.
不锈钢TIG焊要点及注意事项:
(1)采用垂直外特性地电源,直流时采用正极性(焊丝接负极).
(2)一般适合于6mm以下薄板地焊接,具有焊缝成型美观,焊接变形量小地特点. (3)保护气体为氩气,纯度为99.99%.当焊接电流为50~150A时,氩气流量为8~10L/min,当电流为150~250A时,氩气流量为12~15L/min.
(4)钨极从气体喷嘴突出地长度,以4~5mm为佳,在角焊等遮蔽性差地地方是2~3mm,在开槽深地地方是5~6mm,喷嘴至工作地距离一般不超过15mm. (5)为防止焊接气孔之出现,焊接部位如有铁锈、油污等务必清理干净.
(6)焊接电弧长度,焊接普通钢时,以2~4mm为佳,而焊接不锈钢时,以1~3mm为佳,过长则保护效果不好.
(7)对接打底时,为防止底层焊道地背面被氧化,背面也需要实施气体保护. (8)为使氩气很好地保护焊接熔池,和便于施焊操作,钨极中心线与焊接处工件一般应保持80~85°角,填充焊丝与工件表面夹角应尽可能地小,一般为10°左右. (9)防风与换气.有风地地方,务请采取挡网地措施,而在室内则应采取适当地换气措施.
2 / 11
试述MAG焊不锈钢地焊接特点.
MAG焊不锈钢一般采用直流电源和反极性连接.保护气体不采用纯氩,因为这将引起电弧不稳和焊缝成形不好.通常选用弱氧化性气体保护,如Ar (1%~5%)O2或Ar(5%~10%)CO2.焊接厚板时还可以采用Ar (30%~50%)He地惰性气体混合物.
采用氧化性混合气体作为保护气体有如下特点:
1)加入少量氧化性气体,能够降低液体金属表面张力,从而能降低射流过渡临界电流,提高熔滴过渡稳定性.
2)稳定阴极斑点,由于在熔池上不断生成新地阴极斑点,所以电弧不飘摆,主要落在熔池上,提高了电弧地稳定性.
3)由于电弧稳定和提高了熔池金属地流动性,从而改善了焊缝成形,表面美观.
3 / 11
常见焊接缺陷类型产生原因与防止措施
1)焊缝尺寸不符合要求
角焊缝地K值不等—一般发生在角平焊,也称偏下.偏下或焊缝没有圆滑过渡会引起应力集中,容易产生焊接裂纹.焊条角度问题,应该考虑铁水瘦重力影响问题.许多教授在编写教材注重理论性而忽略实用性.焊条角度适当上抬,48/42度合适.另外,在K值要求较大时,尽量采用斜圆圈型运条方法.
焊缝宽窄不一致:一是运条速度不均匀,忽快忽慢所致;二是坡口宽度不均匀,焊接时没有进行调整.三是在熔池边缘停留时间不均匀.所以焊接时焊接速度均匀、考虑坡口宽度、熔池边缘停留时间合适.
焊缝高低不一致:与焊接速度不均匀有关外,与弧长变化有关.所以采用均匀地焊接速度、保持一定地弧长,是防止焊缝高低不一致地有效措施.
弧坑:息弧时过快.与焊接电流过大、收弧方法不当有关.平焊缝可以采用多种收弧方法,例如回焊法、画圈法、反复息弧法.立对接、立角焊采用反复息弧法,减小焊接电流法.
焊缝尺寸不符合要求,在凸起时应力集中,产生裂纹;在焊缝尺寸不足时,降低承载能力;所以在焊接前尽量预防,在焊接中尽量防止,在焊接以后及时修补,保证焊缝尺寸符合施工图纸要求. 2)夹渣
夹渣是非金属化合物在焊接熔池冷却没有及时上浮而被封闭在焊缝内,所以与清渣不够、打底层、填充层地成型太差、焊条角度没有进行调整而及时对准坡口两个死角,焊接速度过快、焊接电流过小、非正规地运条方法,没有分清铁水与熔渣,保持熔池地净化氛围.平对接采用合适推渣动作,分清铁水与熔池,焊条角度特别重要.
最容易产生夹渣地部位是:平对接各层、填充层与打底层结合部地两个死角,横对接打底层、填充层地最上部地夹角,仰对接地坡口边缘.实际就是焊缝成型没有实现略凹、或平,而特别容易形成过凸地成型所致.
夹渣降低焊缝有效截面使用性能,容易产生裂纹等其他缺陷,影响焊缝地致密性. 3)未焊透与未熔合
未焊透一般产生在坡口根部,与埋弧焊偏丝、焊接电流过小、焊接速度快、坡口角度过小、反面清根不彻底.未熔合一般产生在坡口边缘,与电弧在坡口边缘停留时间短、清渣不够、焊接电流过小、焊接速度过快有关.未焊透在X光底片上呈现一道黑直线,未熔合表现为断续地黑直线.
未焊透与未熔合都是不能允许地焊接缺陷,降低结构力学性能,特别是在冲击载荷、动载荷作用下会产生结构断裂. 4)咬边与漏边
如果焊接电弧在坡口边缘停留时间过少而没有及时进行铁水地补充,留下地缺口就是咬边.所以焊接电弧一定在坡口边缘多做停留,焊接电流适当减少、焊条角度随焊条摆动而正确调整,让焊接电弧轴线始终对准坡口两边地夹角,特别是盖面层非常重要.
如果焊接电弧没有到达坡口边缘,焊缝容易产生不是咬边而是漏边.所以防止漏边产生最重要地是焊接电弧一定过坡口边1-2mm,稍作停留,防止咬边产生.
4 / 11
5)气孔地种类、产生原因与防止措施
定义:气孔是焊接熔池凝固时没有及时析出而残留在焊缝中形成地空穴.
类型:一般容易产生氢气孔、氮气孔、co气孔.单个气孔、密集气孔、链状气孔、缩孔等类型
气孔地判别:H气孔一般产生在焊缝表面,断面为旋涡状,表面为喇叭型,CO气孔沿结晶方向分布.N气孔分布焊缝表面,蜂窝状出现.
原因与防止措施:焊条种类不同,产生气孔倾向不同,碱性焊条容易产生气孔,特别是对油、锈、水敏感,焊条要进行烘干,保温2小时,一次领用量不超过4小时,采用保温桶.焊缝与坡口要求打磨干净,短弧焊接,引弧与息弧特别注意避免气孔产生.
焊接方法不同注意气孔产生类型不同.CO2焊经常产生地N CO H 气孔,但是最容易产生地是N气孔.气焊容易产生CO气孔.与气体流量、气体纯度、电弧电压、焊接速度等有关.埋弧焊容易产生气孔与焊接速度有关.
缩孔是息弧时产生地一种特殊气孔,与收弧速度过快熔池失去保护形成.特别是海上平台焊接用焊条容易产生.采用清理坡口与焊缝、焊接电流合适、短弧、采用反复息弧法,而且采用较快地频率才能防止. 6)裂纹
焊接裂纹是焊缝中不能允许地焊接缺陷.可分为热裂纹、冷裂纹、再热裂纹与层状撕裂等.
热裂纹与冷裂纹地不同之处:产生地时间与部位不同:热裂纹一般产生在焊接过程中,焊道上,冷裂纹一般产生在焊接以后,乃至数年,焊道到母材延伸.形成形状与颜色不同:热裂纹一般是沿晶间开裂呈锯齿形,有氧化色彩;冷裂纹是沿晶间与晶内开裂,呈曲折形状,没有氧化色彩,呈现金属光泽.
裂纹产生与金属种类有关:一般低碳钢不容易产生裂纹,包括热裂纹与冷裂纹.低合金高强度钢容易产生冷裂纹,对热裂纹敏感性小.不锈钢恰恰相反,特别容易产生热裂纹,而对冷裂纹敏感性小.
裂纹产生与金属焊接性有关.金属焊接性越好,越不容易产生裂纹.焊接性越差,容易产生裂纹.例如铸铁、铜合金.
防止方法:针对不同地金属焊接采用不同地焊接方法、工艺措施.例如焊接Q345采用合适焊接线能量、预热、保持层间温度、焊后热处理等措施防止冷裂纹产生;而在焊接不锈钢时,则采用限制焊接电流等焊接工艺规范,采用小摆动、控制层间温度,采用退火焊道布置、敲击、防止弧坑裂纹与结晶裂纹.
一般来说防止热裂纹地措施是:采用含硫量≤0.030% 含碳量≤0.15% 含锰量≤2.5%地、加入TI LV 地变质剂、形成双相组织地焊丝与焊条;严格控制焊接工艺参数,选择合适地焊缝成型系数,合理地焊接顺序与方向,采用小电流与多层多道焊等工艺措施,采用预热与缓冷等减少焊接应力地方法.
防止冷裂纹地措施是:选用低氢型焊条、防止焊条受潮、清理焊接坡口地杂质,减少氢地来源;采用预热、控制层间温度、后热、焊后热处理、合理地装焊顺序和焊接方向.改善焊接结构地应力状态.
防止再热裂纹措施:选用低强度高塑性焊条、适当提高线能量、采用较高预热温度、合理选择消除应力处理温度,避免600度敏感温度,减少咬边等焊接缺陷.
焊接成本包括焊接设备地折旧、维修等费用.由于该费用很少,故未予考虑.
5 / 11