好文档 - 专业文书写作范文服务资料分享网站

2020年中考数学全套总复习备考资料大全(精品)

天下 分享 时间: 加入收藏 我要投稿 点赞

一般按边顺序分类统计,避免既不重复又不遗漏。 方法3:用代数法求角度

例4、已知一个锐角的余角,是这个锐角的补角的,求这个角。 [思路分析]本题涉及到的角是锐角同它的余角及补角。根据互为余角,互为补角的概念,考虑它们在数量上有什么关系?设锐角为x,则它的余角为90 – x 。,它的补角为180 – x,这就可以列方程了。解:略

[规律总结]有关余角、补角的问题,一般都用代数方法先设未知数,再依题意列出方程,求出结果。 方法4:添加辅助线平移角

例5、已知:如图l—6,AB∥ED 求证:∠B+∠BCD+∠D=360°

[思路分析]我们知道只有周角是等于360°,而图中又出现了与∠BCD相关的以C为顶点的周角,若能把∠B、∠D移到与∠BCD相邻且以C为顶点的位置,即可把∠B、∠BCD和∠D三个角组成一分周角,则可推出结论。证时:略

规律总结]此题虽是三种证法但思想是一样的,都是通过加辅助线,平移角达到目的,这种处理方法在几何中常常用到。

几何部分 第二章:三角形

知识点:

一、关于三角形的一些概念

由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫三角形的边;相邻两边的公共端点叫三角形的顶点;相邻两边所组成的角叫三角形的内角,简称三角形的角。 1、三角形的角平分线。

三角形的角平分线是一条线段(顶点与内角平分线和对边交线间的距离)

2、三角形的中线

三角形的中线也是一条线段(顶点到对边中点间的距离) 3.三角形的高

16

三角形的高线也是一条线段(顶点到对边的距离) 注意:三角形的中线和角平分线都在三角形内。

如图 2-l, AD、 BE、 CF都是么ABC的角平分线,它们都在△ABC内

如图2-2,AD、BE、CF都是△ABC的中线,它们都在△ABC内

而图2-3,说明高线不一定在 △ABC内,

图2—3—(1) 图2—3—(2) 图2-3一(3)

图2-3—(1),中三条高线都在△ ABC内, 图2-3-(2),中高线CD在△ABC内,而高线AC与BC是三角形的边;

图2-3一(3),中高线BE在△ABC内,而高线AD、CF在△ABC外。

三、三角形三条边的关系 三角形三边都不相等,叫不等边三角形;有两条边相等的叫等腰三角形;三边都相等的则叫等边三角形。

等腰三角形中,相等的两条边叫腰,另一边叫底边,腰和底边的夹角叫底角,两腰的夹角叫项角。 三角形接边相等关系来分类:

?不等边三角形? 三角形三角形?三角形 ?底边和腰不相等的等腰?等腰三角形?等边三角形?? 用集合表示,见图2-4

推论三角形两边的差小于第三边。

不符合定理的三条线段,不能组成三角形的三边。

例如三条线段长分别为5,6,1人因为5+6<12,所以这三条线段,不能作为三角形的三边。 三、三角形的内角和

定理三角形三个内角的和等于180° 由定理可知,三角形的二个角已知,那么第三角可以由定理求得。 如已知△ABC的两个角为∠A=90°,∠B=40°,则∠C=180°–90°–40°=50° 由定理可以知道,三角形的三个内角中,只可能有一个内角是直角或钝角。

推论1:直角三角形的两个锐角互余。 三角形按角分类:

?直角三角形? 三角形??锐角三角形

斜三角形???钝角三角形? 用集合表示,见图

三角形一边与另一边的延长线组成的角,叫三角形的外角。 推论2:三角形的一个外角等于和它不相邻的两个内角的和。 推论3:三角形的一个外角大于任何一个和它不相邻的内角。 例如图2—6中

∠1 >∠3;∠1=∠3+∠4;∠5>∠3+∠8;∠5=∠3+∠7+∠8;

∠2>∠8;∠2=∠7+∠8;∠4>∠9;∠4=∠9+∠10等等。

四、全等三角形

能够完全重合的两个图形叫全等形。 两个全等三角形重合时,互相重合的顶点叫对应顶点,互相重合的边叫对应边,互相重合的角叫对应角。 全等用符号“≌”表示

△ABC≌△A `B`C`表示 A和 A`, B和B`, C和C`是对应点。

全等三角形的对应边相等;全等三角形的对应角相等。

如图2—7,△ABC≌△A `B`C`,则有A、B、C的对应点A`、B`、C`;AB、BC、CA的对应边是A`B`、B`C`、C`A`。 ∠A,∠B,∠C的对应角是∠A`、∠B`、∠C`。

∴AB=A`B`,BC=B`C`,CA=C`A`;∠A=∠A`,∠ B=∠B`,∠C=∠C`

五、全等三角形的判定

1、边角边公理:有两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)

注意:一定要是两边夹角,而不能是边边角。

2、角边角公理:有两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角“或“ASA”) 3、推论有两角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边’域“AAS”)

4、边边边公理有三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”)

由边边边公理可知,三角形的重要性质:三角形的稳定性。 除了上面的判定定理外,“边边角”或“角角角”都不能保证两个三角形全等。

5、直角三角形全等的判定:斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边,直角边”或“HL”)

六、角的平分线

定理1、在角的平分线上的点到这个角的两边的距离相等。 定理2、一个角的两边的距离相等的点,在这个角的平分线上。 由定理1、2可知:角的平分线是到角的两边距离相等的所有点的集合。

可以证明三角形内存在一个点,它到三角形的三边的距离相等这个点就是三角形的三条角平分线的交点(交于一点) 在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互为逆命题,如果把其中的一个做原命题,那么另一个叫它的逆命题。 如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫互逆定理,其中一个叫另一个的逆定 理。

例如:“两直线平行,同位角相等”和“同位角相等,两直线平行”是互逆定理。

一个定理不一定有逆定理,例如定理:“对顶角相等”就没逆定理,因为“相等的角是对顶角”这是一个假命颗。

2020年中考数学全套总复习备考资料大全(精品)

一般按边顺序分类统计,避免既不重复又不遗漏。方法3:用代数法求角度例4、已知一个锐角的余角,是这个锐角的补角的,求这个角。[思路分析]本题涉及到的角是锐角同它的余角及补角。根据互为余角,互为补角的概念,考虑它们在数量上有什么关系?设锐角为x,则它的余角为90–x。,它的补角为180–x,这就可以列方程了。解:略<
推荐度:
点击下载文档文档为doc格式
320kr1t7vb3pit886asl2xn8u9whjn0047i
领取福利

微信扫码领取福利

微信扫码分享