六年级上册数学知识点
?
班 级:_______________________
姓 名:_______________________
1
第一单元 分数乘法
一、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
88例如: ×5表示求5个的和是多少?
992、分数乘分数是求一个数的几分之几是多少。
8383 例如: ×表示求的是多少?
9494(二)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分) 2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时)
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a c + b c
二、分数乘法的解决问题
(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)
1、画线段图:
2
(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。 2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面 3、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数×4、写数量关系式技巧:
几。 几(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ” (2)分率前是“的”: (3)分率前是“多或少”的意思:
单位“1”的量×分率=分率对应量 单位“1”的量×(1?分率)=分率对应量
3
第二单元 位置与方向
一、确定物体位置的方法:
1、先找方向。以“偏”字左面的字所在的线为0刻度线,坐标的中心为顶点,量取需要的度数画出一个角。
2、再定距离:看已知的长度里面有多少个比例尺代表的数量,画出多少段。即“已知长度÷比例尺代表的数量=段数”。
3、标出角度和地点名称,地点名称就是“在”字左面的地点。
二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:
两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:东--西;南--北;东偏南--西偏北。
4
第三单元 分数除法
一、倒数
1、倒数的意义: 乘积是1的两个数互为倒数。 ..
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。 2、求倒数的方法:
(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。 (3)、求带分数的倒数:把带分数化为假分数,再求倒数。 (4)、求小数的倒数: 把小数化为分数,再求倒数。
13、1的倒数是1; 0没有倒数。 因为1×1=1;0乘任何数都得0,(分母不能为0)
011ba4、 对于任意数a(a?0),它的倒数为;非零整数a的倒数为;分数的倒数是;
aaab5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
二、分数除法
1、分数除法的意义:
乘法: 因数 × 因数 = 积 除法: 积 ÷ 一个因数 = 另一个因数 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。 3、规律(分数除法比较大小时): (1)、当除数大于1,商小于被除数;
(2)、当除数小于1(不等于0),商大于被除数;
5