新修订高中阶段原创精品配套教材
《椭圆的简单几何性质》知识点总结
教材定制 / 提高课堂效率 /内容可修改
Summary of Knowledge Points in \
Ellipse\
教师:风老师 风顺第二中学
编订:FoonShion教育
原创教学设计 Excellent Teaching Design 《椭圆的简单几何性质》知识点总结
教材说明:本教学设计资料适用于高中高二数学科目 ,主要用途为训练学生的思维,帮助学生用数字去了解日常生活中的现象,分析和解决生产、生活中的实际问题,使得在能严谨地思考,并有更多良好的解决方法,进而促进全面发展和提高。内容已根据教材主题进行配套式编写,可直接修改调整或者打印成为纸质版本进行教学使用。 椭圆的简单几何性质中的考查点: (一)、对性质的考查:
1、范围:要注意方程与函数的区别与联系;与椭圆有关的求最值是变量的取值范围;作椭圆的草图。
2、对称性:椭圆的中心及其对称性;判断曲线关于x轴、y轴及原点对称的依据;如果曲线具有关于x轴、y轴及原点对称中的任意两种,那么它也具有另一种对称性;注意椭圆不因坐标轴改变的固有性质。
3、顶点:椭圆的顶点坐标;一般二次曲线的顶点即是曲线与对称轴的交点;椭圆中a、b、c的几何意义(椭圆的特征三角形及离心率的三角函数表示)。
4、离心率:离心率的定义;椭圆离心率的取值范围:(0,1);椭圆的离心率的变化对椭圆的影响:当e趋向于1时:c趋向于a,此时,椭圆越扁平;当e趋向于0时:c趋向于0,此时,椭圆越接近于圆;当且仅当a=b时,c=0,两焦点重合,椭圆变成圆。
第 2 页 / 总 3页
原创教学设计 Excellent Teaching Design (二)、课本例题的变形考查:
1、近日点、远日点的概念:椭圆上任意一点p(x,y)到椭圆一焦点距离的最大值:a+c与最小值:a-c及取最值时点p的坐标;
2、椭圆的第二定义及其应用;椭圆的准线方程及两准线间的距离、焦准距:焦半径公式。
3、已知椭圆内一点m,在椭圆上求一点p,使点p到点m与到椭圆准线的距离的和最小的求法。
4、椭圆的参数方程及椭圆的离心角:椭圆的参数方程的简单应用:
5、直线与椭圆的位置关系,直线与椭圆相交时的弦长及弦中点问题。
FoonShion教育研究中心编制
Prepared by foonshion Education Research Center
第 3 页 / 总 3页