好文档 - 专业文书写作范文服务资料分享网站

DJDK-1型电力电子技术及电机控制实验装置简介及操作

天下 分享 时间: 加入收藏 我要投稿 点赞

.

5、控制电路

其线路原理如图1-5所示。在由原KC04、KC41和KC42三相集成触发电路的基础上,又增加了4066、4069芯片,可产生三相六路互差60°的双窄脉冲或三相六路后沿固定、前沿可调的宽脉冲链,供触发晶闸管使用。

在面板上设有三相同步信号观测孔、两路触发脉冲观测孔。VT1~VT6为单脉冲观测孔(在触发脉冲指示为“窄脉冲”)或宽脉冲观测孔(在触发脉冲指示为“窄脉冲”);VT1’~VT6’为双脉冲观测孔(在触发脉冲指示为“窄脉冲”)或宽脉冲观测孔(在触发脉冲指示为“窄脉冲”)。

.

.

图1-5 触发电路原理图

三相同步电压信号从每个KC04的“8”脚输入,在其“4”脚相应形成线性增加的锯齿波,移相控制电压Uct和偏移电压Ub经叠加后,从“9”脚输入。当触发脉冲选择的钮子开关拨到窄脉冲侧时,通过控制4066(电子开关),使得每个KC04从“1、15”脚输出相位相差180°的单窄脉冲(可在上面的脉冲观测孔观测到),窄脉冲经KC41(六路双脉冲形成器)后,得到六路双窄脉冲(可在下面的脉冲观测孔观测到)。将钮子开关拨到宽脉冲侧时,通过控制4066,使得KC04的“1、15”脚输出宽脉冲,同时将KC41的控制端“7”脚接高电平,使KC41停止工作,宽脉冲则通过4066的“3、9”两脚直接输出。

4069为反相器,它将部分控制信号反相,控制4066;KC42为调制信号发生器,对窄脉冲和宽脉冲进行高频调制。具体有关KC04、KC41、KC42的内部电路原理图,请查阅附录中的相关内容。

6、正、反桥功放电路

正、反桥功放电路的原理以正桥的一路为例,如图1-6所示;由触发电路输出的脉冲信号经功放电路中的V2、V3三极管放大后由脉冲变压器T1输出。Ulf即为DJKO2面板上的Ulf ,接地才可使V3工作,脉冲变压器输出脉冲;正桥共有六路功放电路,其余的五路电路完全与这一路一致;反桥功放和正桥功放线路完全一致,只是控制端不一样,将Ulf改为Ulr。

.

.

图1-6 功放电路原理图

7、正桥控制端Ulf及反桥控制端Ulr

这两个端子用于控制正反桥功放电路的工作与否,当端子与地短接,表示功放电路工作,触发电路产生的脉冲经功放电路从正反桥脉冲输出端输出;悬空表示功放不工作;Ulf控制正桥功放电路,Ulr控制反桥。

8、正、反桥脉冲输出端

经功放电路放大的触发脉冲,通过专用的20芯扁平线将DJK02“正反桥脉冲输入端” 与DJK02-1上的“正反桥脉冲输出端”连接,为其晶闸管提供相应的触发脉冲;接口的详细情况详见附录相关内容。

三、DJK03-1挂件(晶闸管触发电路)

晶闸管装置的正常工作与门极触发电路的正确、可靠的运行密切相关,门极触发电路必须按主电路的要求来设计,为了能可靠触发晶闸管应满足以下要求:

(1)触发脉冲应有足够的功率,触发脉冲的电压和电流应大于晶闸管要求的数值,并保留足够的裕量。

.

.

(2)为了实现变流电路输出的电压连续可调,触发脉冲的相位应能在一定的范围内连续可调。

(3)触发脉冲与晶闸管主电路电源必须同步,两者频率应该相同,而且要有固定的相位关系,使每一周期都能在同样的相位上触发。

图1-7 DJK03-1面板图

(4)触发脉冲的波形要符合一定的要求。多数晶闸管电路要求触发脉冲的前沿要陡,以实现精确的导通控制。对于电感性负载,由于电感的存在,其回路中的电流不能突变,所以要求其触发脉冲要有一定的宽度,以确保主回路的电流在没有上升到晶闸管擎住电流之前,其门极与阴极始终有触发脉冲存在,保证电路可靠工作。

DJK03-1挂件是晶闸管触发电路的专用的实验挂箱,面板如图1-7所示。其中有单结晶体管触发电路、正弦波同步移相触发电路、锯齿波同步移相触发电路I和II,单相交流调压触发电路以及西门子TCA785集成触发电路。

1、单结晶体管触发电路

利用单结晶体管(又称双基极二极管)的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路,如图1-8所示。

图中V6为单结晶体管,其常用的型号有BT33和BT35两种,由等效电阻V5和C1组成组成RC充电回路,由C1-V6-脉冲变压器组成电容放电回路,调节RP1即可改变C1充电回路中的等效电阻。

.

.

图1-8 单结晶体管触发电路原理图

工作原理简述如下:

由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1、V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7及等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压UP时,单结晶体管V6导通,电容通过脉冲变压器原边放电,

脉冲变压器副边输出脉冲。同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压Uv,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。在一个梯形波周期内,V6可能导通、关断多次,但对晶闸管的触发只有第一个输出脉冲起作用。电容C1的充电时间常数由等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。单结晶体管触发电路的各点波形如图1-9所示。电位器RP1已装在面板上,同步信号已在内部接好,所有的测试信号都在面板上引出。

.

DJDK-1型电力电子技术及电机控制实验装置简介及操作

.5、控制电路其线路原理如图1-5所示。在由原KC04、KC41和KC42三相集成触发电路的基础上,又增加了4066、4069芯片,可产生三相六路互差60°的双窄脉冲或三相六路后沿固定、前沿可调的宽脉冲链,供触发晶闸管使用。在面板上设有三相同步信号观测孔、两路触发脉
推荐度:
点击下载文档文档为doc格式
311ww2tm3r0a0pl1szsm0n19a8hr9t00guv
领取福利

微信扫码领取福利

微信扫码分享