WORD格式整理
全等三角形复习
[知识要点] 一、全等三角形 1.判定和性质 判定 性质 一般三角形 直角三角形 边角边(SAS)、角边角(ASA) 具备一般三角形的判定方法 角角边(AAS)、边边边(SSS) 斜边和一条直角边对应相等(HL) 对应边相等,对应角相等 对应中线相等,对应高相等,对应角平分线相等 注:① 判定两个三角形全等必须有一组边对应相等; ② 全等三角形面积相等. 2.证题的思路:
??找夹角(SAS)???已知两边?找直角(HL)?找第三边(SSS)????任意角(AAS)?若边为角的对边,则找????找已知角的另一边(SAS)? ?已知一边一角????边为角的邻边?找已知边的对角(AAS)?找夹已知边的另一角(??ASA)??????找两角的夹边(ASA)?已知两角???找任意一边(AAS)?例1如图,∠E=∠F=90。,∠B=∠C,AE=AF,给出下
列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM; ④CD=DN,其中正确的结论是 (把你认为所 有正确结论的序号填上)
例2在△ABC中,AC=5,中线AD=4,则边AB的取值范围是( )
A.1 例3一张长方形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下右图形式,使点B、F、C、D在同一条直线上 (1)求证:AB⊥ED (2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明 专业知识分享 WORD格式整理 例4若两个三角形的两边和其中一边上的高分别对应相等,试判断这两个三角形的第三边所对的角之间的关系,并说明理由 例5如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFE的度数 1.如图,AD、A′D′分别是锐角△ABC和△A′B′C′中BC,B′C′边上的高,且AB=A′B′,AD=A′D ′,若使△ABC≌△A′B′C′,请你补充条件(只需要填写一个你认为适当的条件) 2.如图,0A=0B,OC=OD,∠O=60°,∠C=25°,则 ∠BED等于 3.如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形. 专业知识分享 WORD格式整理 4.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠a的度数为 5.如图,已知0A=OB,OC=0D,下列结论中:①∠A=∠B;②DE=CE;③连OE,则0E平分∠0,正确的是( ) A.①② B。②③ C.①③ D.①②③ 6.如图,A在DE上,F在AB上,且AC=CE,∠l=∠2=∠3,则DE的长等于( ). A:DC B.BC C.AB D.AE+AC 7.如图,AB∥CD,AC∥DB,AD与BC交于0,AE⊥BC.于E,DF⊥BC于F,那 么图中全等的三角形有( )对 A.5 B.6 C.7 D.8 8.如图,把△ABC绕点C顺时针旋转35度,得到△A′B′C, A′B′交AC乎点D,已知∠A′DC=90°,求∠A的度数 9..如图,在△ABE和△ACD中,给出以下四个论断:①AB=AC;②AD=AE③AM=AN④AD⊥DC,AE⊥BE.以其中三个论断为题设,填入下面的“已知”栏中,一个论断为结论,填入下面的“求证”栏中,使之组成一个 专业知识分享