本文部分内容来自网络,本人不为其真实性负责,如有异议请及时联系,本人将予以删除 浙江省金华市2017-2018学年高一数学上学期期末考试试题
试卷满分100分, 考试时80分钟
一、单选题(共18题,每小题3分,共54分)
1、已知集合U={1,3,5,7,9},A={1,5,7},则 ?UA=( )
A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9} 2、下列函数与y=x有相同图象的一个函数是( ) A、y=
B、y= C、
y?logx aaD、y?alogax(a>0且a≠1) 3、函数y?xln?1?x?的定义域为 ( ) A. ?0,1? B. ?0,1? C. ?0,1? D. ?0,1? 4、
=( ) log427?log27A、﹣2 B、2 C、12 D、﹣12 5、已知a?log0.90.70.8,b?log1.10.9,c?1.1,则a,b,c的大小关系是 A a?b?c B a?c?b C b?a?c D c?a?b 6、已知幂函数y?f(x)的图象过点(2,2), 则f(x)的值为( ) A、 B、2 C、12 D、8 7、函数y=a x - 2 +1(a>0且a≠1)的图象必经过点( ) A、(0,1) B、(1,1) C、(2,0) D、(2,2) 8、函数
y?log的单调增区间是( ) 1(6?x?x2)2A.??1?-∞,2??? B.??1?-2,2??? C.??1?2,+∞??? D.??1?2,3??? 9、函数
f(x)?lnx?2x的零点所在的大致区间是 ( ) A、(1,2) B、(2,3) C、(1,
1e)和(3,4) D、(e,??) 10、下列各角中与
??4终
边
相
同
的
是
(
)
A、﹣
B、 C、
D、
11、已知扇形的周长为8 cm,圆心角为2弧度,则该扇形的面积为( ) A.4 cm2 B.6 cm2 C.8 cm2
D.16 cm2
D.
( )
12.已知集合下列角中,终边在y轴非正半轴上的是 A.
? 4 B.
? 2 C.π
3? 213. 化简sin6900的值是( ) A.0.5 B.?0.5 C.33 D.? 224)14. 若点P(?3,在角?的终边上,则cos?A. ?=( ) 3344 B. C. ? D. 555515、下列命题: (1)钝角是第二象限的角, (2)小于90°的角是锐角, (3)第一象限的角一定不是负角, (4)第二象限的角一定大于第一象限的角. 其中正确的命题的个数是( ) A、1 B、2 C、3 D、4 3??3????,,tan???????16. 已知,则sin??cos?的值是( ) ???22?4A.? B.15117 C. ? D. ? 55517.将函数f(x)=sin(2x-?1?)的图象上各点的横坐标压缩到原来的,再将图象向左平移个单位,那么所323得到的图象的解析表达式为 ( ) A.y=sin(4x+
?2? ) B.y=sin(x-) C.y=sin4x D.y=?sin4x 331sin(2???)等于( ) 218、若sin(??)??m,则sin(3???)? A.?
2323m B.?m C.m D. m 3232二、填空题(共4题,每空3分,共15分)
19、函数y=2sin(πx +
?)的最小正周期是________,对称中心是 . 2?2x,x<0,
20、已知函数f(x)=??x-4,x≥0,
则f(f(1))=________
2
21、已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞) 时,f(x)=x-2x;当x<0时,函数的解析式为________ . 22、函数y?sin(2x??)(0????)是R上的偶函数,则?的值是____________ 三、解答题(共3题;共31分)
23、(10分)已知集合A={x|﹣1<x<2},B={x|0≤ x ≤3}. (1)求A∩B,A∪B;
(2)设集合M={x|a<x≤a+2},且M?A,求实数a的取值范围.
24、(10分)已知函数f(x)??9x?3x?1?4 (1)求函数f(x)的零点;
(2)当x∈[0,1]时,求函数f(x)的值域. .
25、(11分)函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π )(x∈R)的部分图象如图所示. (1)求函数f(x)的解析式; (2)求函数f(x)的的增区间.
.
免责声明:本文仅代表作者个人观点,作参考,并请自行核实相关内容. 声明:本文部分内容来自网络,本司不为其真实性负责,如有异议请及时联系,本司将予以删除
本文部分内容来自网络,本人不为其真实性负责,如有异议请及时联系,本人将予以删除BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiu BaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaidubadiubadiuBaidubaidubaidubaiduba
diubadiuBaidubaidubaidubaidubadiubadiu