圆的四种方程
(1)圆的标准方程 (x?a)2?(y?b)2?r2.
(2)圆的一般方程 x2?y2?Dx?Ey?F?0(D?E?4F>0).
22?x?a?rcos?.
?y?b?rsin?(4)圆的直径式方程 (x?x(圆的直径的端点是1)(x?x2)?(y?y1)(y?y2)?0A(x1,y1)、B(x2,y2)).
(3)圆的参数方程 ?87. 圆系方程
(1)过点A(x1,y1),B(x2,y2)的圆系方程是
(x?x1)(x?x2)?(y?y1)(y?y2)??[(x?x1)(y1?y2)?(y?y1)(x1?x2)]?0
?c?0是直线?(x?x1)(x?x2)?(y?y1)(y?y2)??(ax?by?c)?0,其中ax?byAB的方程,λ是待定的系数.
(2)过直线l:Ax?By?C?0与圆C:x2?y2?Dx?Ey?F?0的交点的圆系方程是x2?y2?Dx?Ey?F??(Ax?By?C)?0,λ是待定的系数.
22(3) 过圆C1:x2?y2?D1x?E1y?F1?0与圆C2:x?y?D2x?E2y?F2?0的交
22点的圆系方程是x2?y2?D1x?E1y?F1??(x?y?D2x?E2y?F2)?0,λ是待定的
系数.
88.点与圆的位置关系
点P(x0,y0)与圆(x?a)2?(y?b)2?r2的位置关系有三种 若d?(a?x0)2?(b?y0)2,则
d?r?点P在圆外;d?r?点P在圆上;d?r?点P在圆内.
89.直线与圆的位置关系
222直线Ax?By?C?0与圆(x?a)?(y?b)?r的位置关系有三种:
d?r?相离???0; d?r?相切???0; d?r?相交???0.
其中d?Aa?Bb?CA?B22.
90.两圆位置关系的判定方法
设两圆圆心分别为O1,O2,半径分别为r1,r2,O1O2?d
d?r1?r2?外离?4条公切线; d?r1?r2?外切?3条公切线;
r1?r2?d?r1?r2?相交?2条公切线; d?r1?r2?内切?1条公切线; 0?d?r1?r2?内含?无公切线.
91.圆的切线方程
(1)已知圆x?y?Dx?Ey?F?0.
①若已知切点(x0,y0)在圆上,则切线只有一条,其方程是 x0x?y0y?22D(x0?x)E(y0?y)??F?0. 22当(x0,y0)圆外时, x0x?y0y?D(x0?x)E(y0?y)??F?0表示过两个切点22的切点弦方程.
②过圆外一点的切线方程可设为y?y0?k(x?x0),再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.
③斜率为k的切线方程可设为y?kx?b,再利用相切条件求b,必有两条切线.
(2)已知圆x2?y2?r2.
2①过圆上的P0(x0,y0)点的切线方程为x0x?y0y?r;
②斜率为k的圆的切线方程为y?kx?r1?k2.