A.130°
B.140°
C.150°
D.160°
6.(2019湖南益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是( )
A.PA=PB
B.∠BPD=∠APD
C.AB⊥PD
D.AB平分PD
7.(2019?广东广州)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为( ) A.0条
B.1条
C.2条
D.无数条
8.(2019?山东泰安)如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为( )
A.32°
B.31°
C.29°
D.61°
9.(2019?湖南益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是( ) A.PA=PB
B.∠BPD=∠APD
C.AB⊥PD
D.AB平分PD
6
10. (2019湖北荆门)如图,△ABC内心为I,连接AI并延长交△ABC的外接圆于D,则线段DI与DB的关系是( )
A.DI=DB 二、填空题
11.(2019广西北部湾)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题:“今有圆材埋在壁中,不知大小。以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为 寸.
B.DI>DB
C.DI<DB
D.不确定
12. (2019黑龙江绥化)半径为5的¤O是锐角三角形ABC的外接圆,AB=AC,连接OB,OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为______.
13. (2019山东东营)如图,AC是⊙O的弦,AC=5,点B是⊙O 上的一个动点,且∠ABC=45°,若点M、N分别是 AC、BC的中点,则 MN的最大值是____________.
14.(2019黑龙江省龙东地区)如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠
7
AOB的度数为________.
DOBAC
15.(2019江苏常州)如图,AB是⊙O的直径,C、D是⊙O上的两点,∠AOC=120°,则∠CDB= °.
16.(2019四川省雅安市)如图,△ABC内接于⊙O,BD是⊙O的直径,∠CBD=21°,则 ∠A的度数为_______.
ADBOC
17.(2019安徽)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2, 则CD的长为 .
18.(2019?江苏泰州)如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B.C.设PB=x,PC=y,则y与x的函数表达式为 .
19.(2019?山东省济宁市 )如图,O 为Rt△ ABC 直角边 AC 上一点,以 OC 为半径的⊙O 与斜边 AB 相切于点 D,交 OA 于点 E,已知 BC=
,AC=3.则图中阴影部分的面积是 .
8
20.(2019?湖北省鄂州市)如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点
A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为 .
三、解答题
21.(2019?南京)如图,⊙O的弦AB.CD的延长线相交于点P,且AB=CD.求证:PA=PC.
22.(2019?湖南株洲)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC.BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P. (1)求证:四边形ADCH是平行四边形; (2)若AC=BC,PB=
PD,AB+CD=2(+1)
①求证:△DHC为等腰直角三角形; ②求CH的长度.
9
23.(2019?广西池河)如图,五边形ABCDE内接于⊙O,CF与⊙O相切于点C,交AB延长线于点F. (1)若AE=DC,∠E=∠BCD,求证:DE=BC;(2)若OB=2,AB=BD=DA,∠F=45°,求CF的长.
24.(2019?甘肃)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E. (1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.
25.(2019?湖北省咸宁市)如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G. (1)试判断FG与⊙O的位置关系,并说明理由. (2)若AC=3,CD=2.5,求FG的长.
10