总数5+4+3+2+1=15(条).
想一想:①由例2可知,一条大线段上有六个点,就有:总数=5+4+3+2+1条线段.由此猜想如下规律(见图3-7):
还可以一直做下去.总之,线段总条线是从1开始的一串连续自然数之和,其中最大的自然数比总数小1.我们又发现了一条规律.它说明了点数与线段总数之间的关系.
②上面的事实也可以这样说:如果把相邻两点间的线段叫做基本线段,那么一条大线段上的基本线段数和线段总条数之间的关系是: 线段总条数是从1开始的一串连续自然数之和,其中最大的自然数等于基本线段的条数(见图3-8).基本线段数 线段总条数
还可以一直写下去,同学们可以自己试试看. 例3 数一数,图3-9中共有多少个锐角?
解:(1)我们知道,图中任意两条从O点发出的射线都组成一个锐角.
所以,以OA边为公共边的锐角有:
6 / 12
∠LAOB,∠AOC,∠AOD,∠AOE, ∠AOF共5个.
以OB边为公共边的锐角有:∠BOC,∠BOD,∠BOE,∠BOF共4个. 以OC边为公共边的锐角有:∠COD,∠COE,∠COF共3个.以OD边为公共边的锐角有:∠DOE,∠DOF共2个.以OE边为一边的锐角有:∠EOF只1个.
锐角总数5+4+3+2+1=15(个).
②用图示法更为直观明了:如图3-10所示,锐角总数为:5+4+3+2+1=15(个).
想一想:①由例3可知:由一点发出的六条射线,组成的锐角的总数=5+4+3+2+1(个),由此猜想出如下规律:(见图3-11~15) 两条射线1个角(见图3-11)
三条射线2+1个角(见图3-12)
四条射线3+2+1个角(见图3-13)
7 / 12
五条射线4+3+2+1个角(见图3-14)
六条射线5+4+3+2+1个角(见图3-15)
总之,角的总数是从1开始的一串连续自然数之和,其中最大的自然数比射线数小1.
②同样,也可以这样想:如果把相邻两条射线构成的角叫做基本角,那么有共同顶点的基本角和角的总数之间的关系是:
角的总数是从1开始的一串连续自然数之和,其中最大的自然数等于基本角个数.
③注意,例2和例3的情况极其相似.虽然例2是关于线段的,例3是关于角的,但求总数时,它们有同样的数学表达式.同学们可以看出,一个数学式子可以表达表面上完全不同的事物中的数量关系,这就是数学的魔力.
习题
8 / 12
1.书库里把书如图3-16所示的那样沿墙堆放起来.请你数一数这些书共有多少本?
2.图3-17所示是一个跳棋盘,请你数一数,这个跳棋盘上共有多少个棋孔?
3.数一数,图3-18中有多少条线段?
4.数一数,图3-19中有多少锐角?
9 / 12
5.数一数,图3-20中有多少个三角形?
6.数一数,图3-21中有多少正方形?
习题解答
1.解:方法1:从左往右一摞一摞地数,再相加求和: 10+11+12+13+14+15+14+13+12+11+10 =135(本).
方法2:把这摞书形成的图形看成是由一个长方形和一个三角形“尖顶”组成.
长方形中的书 10×11=110
三角形中的书 1+2+3+4+5+4+3+2+1=25
10 / 12