第三讲 数数与计数(二)
例1 数一数,图3-1中共有多少点?
解:(1)方法1:如图3-2所示从上往下一层一层数:
第一层 1个 第二层 2个 第三层 3个 第四层 4个 第五层 5个 第六层 6个 第七层 7个 第八层 8个 第九层 9个
1 / 12
第十层 10个 第十一层 9个 第十二层 8个 第十三层 7个 第十四层 6个 第十五层 5个 第十六层 4个 第十七层 3个 第十八层 2个 第十九层 1个
总数1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1 =(1+2+3+4+5+6+7+8+9+10)+(9+8+7+6+5+4+3+2+1) =55+45=100(利用已学过的知识计算).
(2)方法2:如图3-3所示:从上往下,沿折线数
第一层 1个 第二层 3个 第三层 5个
2 / 12
第四层 7个 第五层 9个 第六层 11个 第七层 13个 第八层 15个 第九层 17个 第十层 19个
总数:1+3+5+7+9+11+13+15+17+19=100(利用已学过的知识计算). (3)方法3:把点群的整体转个角度,成为如图3-4所示的样子,变成为10行10列的点阵.显然点的总数为10×10=100(个).
想一想:
①数数与计数,有时有不同的方法,需要多动脑筋. ②由方法1和方法3得出下式:
1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10
即等号左边这样的一串数之和等于中间数的自乘积.由此我们猜想:
1=1×1 1+2+1=2×2
3 / 12
1+2+3+2+1=3×3 1+2+3+4+3+2+1=4×4 1+2+3+4+5+4+3+2+1=5×5 1+2+3+4+5+6+5+4+3+2+1=6×6 1+2+3+4+5+6+7+6+5+4+3+2+1=7×7 1+2+3+4+5+6+7+8+7+6+5+4+3+2+1=8×8 1+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1=9×9 1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10
这样的等式还可以一直写下去,能写出很多很多.
同学们可以自己检验一下,看是否正确,如果正确我们就发现了一条规律.
③由方法2和方法3也可以得出下式:
1+3+5+7+9+11+13+15+17+19=10×10.
即从1开始的连续奇数的和等于奇数个数的自乘积.由此我们猜想: 1+3=2×2 1+3+5=3×3 1+3+5+7=4×4 1+3+5+7+9=5×5 1+3+5+7+9+11=6×6 1+3+5+7+9+11+13=7×7 1+3+5+7+9+11+13+15=8×8 1+3+5+7+9+11+13+15+17=9×9 1+3+5+7+9+11+13+15+17+19=10×10
4 / 12
还可往下一直写下去,同学们自己检验一下,看是否正确,如果正确,我们就又发现了一条规律.
例2 数一数,图3-5中有多少条线段?
解:(1)我们已知,两点间的直线部分是一条线段.以A点为共同端点的线段有:
AB AC AD AE AF 5条.
以B点为共同左端点的线段有: BC BD BE BF 4条.
以C点为共同左端点的线段有: CD CE CF 3条.
以D点为共同左端点的线段有: DE DF 2条.
以E点为共同左端点的线段有: EF1条.
总数5+4+3+2+1=15条.
(2)用图示法更为直观明了.见图3-6.
5 / 12