【大学生职业生涯规划书】大学生《狭义与广义相对论浅
说》读后感
下面是为大家的大学生《狭义与广义相对论浅说》,欢迎大家阅读。更多大学生《狭义与广义相对论浅说》请关注读后感栏目。
《狭义相对论》我中学就有耳闻,那时候虽然什么都不懂,只知道《狭义相对论》是很厉害的理论,也让我体会到了世界的奇妙,宇宙万物的高深,启发了我对科普知识的浓厚兴趣。
简洁来说狭义相对论有两条原理1.所有的物理定律在各个不同的惯性坐标系中都相同2.光速恒定不变E=MC2(平方)是根据这两条原理得出的,只是狭义相对论的一部分 简单的讲就是除了物理定律和光速任何物质都是相对变动的,包括时间和空间。最让我印象深刻的就是狭义相对论的时空观,它让我对物质世界的理解又到了一种层次。 俗话说“覆水难收“意思是倒出去的水很难再收回来,时间也是这样,时间流逝了就很难再回来。但是爱因斯坦的相对论 ___的推翻了这些俗语,当达到光速的时候就有可能做得到穿越时空。
这些观点衍生出来了很多推论和假设,最出名和最让人感兴趣的就是双生子佯谬问题。
一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球。爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻。许多人有疑问,认为A看B在运动,B看A也在运动,为什么不能是A比B年轻呢?由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论。如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式。在此只是用语言来描述一种最简单的情形。不过只用语言无法更详细说明细节,有兴趣的请参考一些相对论书籍。我们的结论是,无论在哪个参考系中,B都比A年轻。 为使问题简化,只讨论这种情形,火箭经过极短时间加速到亚光速,飞行一段时间后,用极短时间掉头,又飞行一段时间,用极短时间减速与地球相遇。这样处理的目的是略去加速和减速造成的影响。在地球参考系中很好讨论,火箭始终是动钟,重逢时B比A年轻。在火箭参考系内,地球在匀速过程中是动钟,时间进程比火箭内慢,但最关键的地方是火箭掉头的过程。在掉头过程中,地球由火箭后方很远的地方经过极短的时间划过半个圆周,到达火箭的前方很远的地方。这是一个
在掉头过程中,地球的时间进度猛地加快了。在B看来,A现实比B年轻,接着在掉头时迅速衰老,返航时,A又比自己衰老的
慢了。重逢时,自己仍比A年轻。也就是说,相对论不存在逻辑上的矛盾。
狭义相对论独特的见解颠覆了传统的经典力学的时空观。经典力学认为时间和空间都是绝对的, 同一个事件不同状态的人测量情况一样, 而相对论认为同一个事件不同的人测量会得出不同的时间, 就象不同的人的表上的不一样. 相对论认为,光速对于任何人是一样的,所以时间不同,经典力学则不。相对论是关于时空和引力的基本理论,主要由爱因斯坦创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。
狭义相对论的四维时空观正是其中对狭义相对论的一个最形象典型的代表。 四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。例如,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时
空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。
在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。
四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。 相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。
如果这些问题得到验证解决,将会对科学科技有着里程碑式的推进,将会解决现在不可以解决的问题,多维空间的确立甚至可以解决困扰人们至今灵魂学的问题。
《狭义相对论》是一个很著名的理论,爱因斯坦总结创新的狭义相对论更是造福了全人类,推动了科学发展的进程。在吴老师的精彩讲课中,生动有趣的课堂更是激发了我对科学的浓厚兴趣及源源不断的求知欲,让我体会到了这个造物世界的奥妙。
阅读本书的读者,大多数在做学生的时候就熟悉欧几里得几何学的宏伟大厦。你们或许会以一种敬多于爱的心情记起这座伟大的建筑。在这座建筑的高高的楼梯上,你们曾被认真的教师追迫了不知多少时间。凭着你们过去的经验,谁要是说这门科学中的那怕是最冷僻的命题是不真实的,你们都一定会嗤之以鼻。但是,如果有人这样问你们,“你们说这些命题是真实的,你们究竟是如何理解的呢?”那么你们这种认为理所当然的骄傲态度或许就会马上消失。让我们来考虑一下这个问题。
几何学是从某些象“平面”、“点”和“直线”之类的概念出发的,我们可以有大体上是确定的观念和这些要领相联系;同时,几何学还从一些简单的命题(公理)出发,由于这些观念,我们倾向于把这些简单的命题当作“真理”接受下来。然后,根据我们自己感到不得不认为是正当的一种逻辑推理过程,阐明其余的命题是这些公理的推论,也就是说这些命题已得到证明。于是,只要一个命题是以公认的方法从公理中推导出来的,这个命题就是正确的(就是