好文档 - 专业文书写作范文服务资料分享网站

微积分讲义chap

天下 分享 时间: 加入收藏 我要投稿 点赞

Chapter 2 Sequences in R

2.1. Limits of sequences

Def: A sequence (infinite sequence) is a function from N into R, xn=f(n), we

denote it by {xn} or {xn}n?N n?N.

2.1. Definition: Let {xn} be a sequence of R, {xn} is said to convergent to a?R if for every ?>0, ? N?N s.t We denote it by limxn=a

n??xn-aN.

1Example. Show that {} is convergent

n Proof: We show limn??Given ??0.

1=0. n1-0N. nTo find an N?N s.t

By Archimedean principle ? N?N s.t N?>1.

???1 N? for n>N, we have 11 0

To find N?N s.t xn?1?1?1??. Take N=1 Then

xn-1=0N.

?limxn=1

n??Exercise. Show that {

1} is convergent 2n

2.3 Ex:ample

Show {(-1)n} has no limit. Proof: suppose lim(-1)n=a.

n??Given ?=

1 ?N?N s.t 21(-1)n-a< for n>N.

2Let n>N be even, then n+1 is odd. 2=1n-(-1)n?1

=(1n?a)?[(?1)n?1?a]?(?1)n?a?(?1)n?1?a<

11+=1 22?{(-1)n} has no limit

Theorem: Let a,b?R. If a?b?? for any ?>0 ?a=b. Proof: Suppose a?b.

Let L=a?b>0 and let ?= L=a?b

L ?? 2L , by assumption, we have 2 ?a=b 2.4:. Remark

A sequence can have at most one limit.

Proof: Let {an} be a sequence of R and let liman=L1 and liman=L2

n??n?? It is sufficient to show L1= L2. Let?>0.

?liman=L1 and liman=L2

n??n?? ?? N1?N s.t an?L1??2 for n> N1

similarly, ?N2?N s.t an?L2? For n>max(N1, N2) We have an?L1?for n>max(N1, N2)

?2 for n> N2

?2 and an?L2??2

L1?L2?L1?an?an?L2?L1?an?L2?an??2??2??

Since ? is arbitrary, we derive that L1= L2.

2.5, Definition.

By a subsequence of a sequence {xn}, we shall mean a sequence {xnk} where n1

2.6.Theorem

Let {xn} be a sequence and {xn} converge to L.

If {xnk}is a subsequence of {xn} then limxnk=L.

nk??Proof:. limxnk= L

nk?? Given ??0, we must find a k?N s.t xnk?L?? for nk>k. ?limxn?L

n?? ??N?N s.t xn?L?? for n>N. Let k?N

? n1< n2< n3< n4…

? nk>k

? xnk?L?? for nk>k. ? limxnk=L

nk??2.7 . Definition.

Let {xn} be a sequence of R, {xn} is called bounded if ? M>0

s.t,xn?M for each n.

2.8. Theorem

Every convergent sequence of R is bounded Proof: Let {xn} converge to L To show {xn} is bounded. We must find a M s.t xn?M

微积分讲义chap

Chapter2SequencesinR2.1.LimitsofsequencesDef:Asequence(infinitesequence)isafunctionfromNintoR,xn=f(n),wedenoteitby{xn}or{xn}n?Nn?N.2.1.D
推荐度:
点击下载文档文档为doc格式
2zjb95ywza5kaxd91bwp423gj8gjlb00kzj
领取福利

微信扫码领取福利

微信扫码分享