4.3.2 角的比较与运算
1.会比较角的大小,理解两个角的和、差、倍、分的意义;(重点)
2.掌握角平分线的概念,能够利用角平分线的定义解决相关计算问题,会用量角器画角的平分线;(难点)
3.经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.(重点)
一、情境导入
有一天聪聪和明明各带了一把折扇(状态如下). 下面是他们的一段对话:
聪聪:“我的折扇张开大一些,所以我的折扇的角也大一些”. 明明:“我的折扇长一些,所以我的折扇的角也大一些”.
同学们有办法帮他们进行判断吗? 二、合作探究
探究点一:角的比较
如图,射线OC,OD分别在∠AOB的内部,外部,下列各式错误的是( )
A.∠AOB<∠AOD B.∠BOC<∠AOB C.∠COD<∠AOD D.∠AOB<∠AOC
解析:A.∠AOB与∠AOD的边OA重合,OB在∠AOD内,所以∠AOB<∠AOD,A正确;同理B、C正确;D.∠AOB和∠AOC的边AO重合,OC在∠AOB内,所以∠AOB>∠AOC.D错误,故选D.
方法总结:此题主要考查了角的比较大小,解题的关键是掌握角比较大小的方法. 探究点二:角度的有关计算
【类型一】 利用角平分线进行角度的计算 如图,∠AOB=120°,OD平分∠BOC,OE平分∠AOC. (1)求∠EOD的度数;
(2)若∠BOC=90°,求∠AOE的度数.
1
解析:(1)根据OD平分∠BOC,OE平分∠AOC可知∠DOE=∠DOC+∠EOC=(∠BOC+∠AOC)
21
=∠AOB,由此即可得出结论; 2
(2)先根据∠BOC=90°求出∠AOC的度数,再根据角平分线的定义即可得出结论. 解:(1)∵∠AOB=120°,OD平分∠BOC,OE平分∠AOC,
111
∴∠EOD=∠DOC+∠EOC=(∠BOC+∠AOC)=∠AOB=×120°=60°;
222
(2)∵∠AOB=120°,∠BOC=90°,∴∠AOC=120°-90°=30°,∵OE平分∠AOC,11
∴∠AOE=∠AOC=×30°=15°.
22
方法总结:能够根据图形正确找到角之间的和差关系,理解角平分线的概念是解题的关
键.
【类型二】 利用三角板叠合进行角度的计算 如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB=( )
A.120° B.180° C.150° D.135°
解析:由图可得∠AOC+∠DOB=∠AOB+∠COD=90°+90°=180°.故选B. 方法总结:此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.
【类型三】 折叠问题中角的计算 如图,将矩形ABCD沿EF折叠,C点落在C′,D点落在D′处.若∠EFC=119°,
则∠BFC′为( )
A.58° B.45° C.60° D.42°
解析:∵将矩形ABCD沿EF折叠,C点落在C′,D点落在D′处,∠EFC=119°,∴∠EFC′=∠EFC=119°,∠EFB=180°-∠EFC=61°,∴∠BFC′=∠EFC′-∠EFB=119°-61°=58°,故选A.
方法总结:掌握折叠的性质,要善于发现题中的隐含条件:折叠前后两图形是完全重合的,其角不变.
探究点三:角度的换算
计算:
(1)153°29′42″+26°40′32″; (2)110°36′-90°37′28″; (3)62°24′17″×4; (4)102°43′21″÷3.
解析:(1)相同单位相加,超过60向上一位进1即可;(2)先借1°化为分和秒,然后同一单位分别相减即可得解;(3)每一个单位分别乘以4,分、秒超出60的部分向上一个单位进1即可;(4)从度开始计算,余数乘以60继续除以3进行计算即可得解.
解:(1)153°29′42″+26°40′32″=179°69′74″=180°10′14″;
(2)110°36′-90°37′28″=109°95′60″-90°37′28″=19°58′32″; (3)62°24′17″×4=248°96′68″=249°37′8″; (4)102°43′21″÷3=102°42′81″÷3=34°14′27″.
方法总结:角度的运算规律为:(1)加减法时将同一单位进行加减,加法够60进1,减法不够减要借1当60;(2)乘法时将数与度、分、秒分别相乘,然后从小到大逢60进1;(3)除法时用度先除,把余数化为分,再加上原来的分,用这个数除以除数,把余数化成秒,再加上原来的秒,再用这个数除以除数,如果除不尽,就按题意要求,进行四舍五入.
三、板书设计 1.角的比较方法
(1)度量法;(2)叠合法. 2.角的计算
(1)角平分线;(2)角的折叠. 3.角度的换算
本节课的教学内容是角的大小的比较、角的和差关系,角的平分线.可利用类比线段的学习方法引出角的大小的比较的两种方法:度量法、叠合法.对于本节教学要把握以下几点:
1.首先在讲授知识的过程中,必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.
2.在角的形象比较中,要努力引导学生的思维方向.
3.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.
3.2 解一元一次方程(一)——合并同类项与移项
第1课时 用合并同类项的方法解一元一次方程
教学目标:
1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型. 2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.
3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.
教学重点:建立方程解决实际问题,会解 “ax+bx=c”类型的一元一次方程. 教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程. 教学过程:
一、设置情境,提出问题
(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.
出示课本P86问题1:
某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?
二、探索分析,解决问题 引导学生回忆: 实际问题
一元一次方程
设问1:如何列方程?分哪些步骤? 师生讨论分析:
(1)设未知数:前年这个学校购买计算机x台; (2)找相等关系:
前年购买量+去年购买量+今年购买量=140台. (3)列方程:x+2x+4x=140.
设问2:怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考: 根据分配律,可以把含 x的项合并,即 x+2x+4x=(1+2+4)x=7x
老师板演解方程过程:略.
为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.
设问3:在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么? 学生讨论回答,师生共同整理:
“合并”是一种恒等变形,它使方程变得简单,更接近“x=a”的形式. 三、拓广探索,比较分析
学生思考回答:若设去年购买计算机x台,得方程 +x+2x=140.
若设今年购买计算机x台,得方程 ++x=140. 课本P87例2.
问题:①每相邻两个数之间有什么关系?
②用x表示其中任意一个数,那么与x相邻的两个数怎样表示? ③根据题意列方程解答. 四、综合应用,巩固提高 1.课本P88练习第1,2题.
2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?
(学生思考、讨论出多种解法,师生共同讲评.)
3.有一列数按一定规律排成-1,2,-4,8,-16,32,……,其中某三个相邻数的和是-960.求这三个数. 五、课时小结
1.你今天学习的解方程有哪些步骤,每一步的依据是什么?