高等数学竞赛试题
一、选择题
1. 设xn?zn?yn,且lim(yn?xn)?0,则limzn( C )
n??n??(A) 存在且等于零; (B) 存在但不一定等于零; (C) 不一定存在; (D) 一定不存在. 2. 设f(x)是连续函数,F(x)是f(x)的原函数,则( A )
(A) 当f(x)为奇函数时,F(x)必为偶函数; (B) 当f(x)为偶函数时,F(x)必为奇函数; (C) 当f(x)为周期函数时,F(x)必为周期函数; (D) 当f(x)为单调增函数时,F(x)必为单调增函数. 3. 设a?0,f(x)在(?a,a)内恒有f\(x)?0且|f(x)|?x2,记I?(A) I?0;
(B) I?0;
(C) I?0;
?a?af(x)dx,则有( B )
(D) 不确定.
4. 设f(x)有连续导数,且f(0)?0,f'(0)?0,F(x)?是同阶无穷小,则k?( B )
(A) 4; (B) 3; 5.
?x0F'(x)与xk当x?0时,(x2?t2)f(t)dt,
(C) 2; (D) 1.
?x2y,x2?y2?0?22设f(x,y)??x?y,则f(x,y)在点(0,0)( D )
?,x2?y2?0?0(A) 不连续;
(C) 可微;
(B) 连续但偏导数不存在;
(D) 连续且偏导数存在但不可微.
????????6. 设a?i?j,b??2j?k,则以向量a、b为边的平行四边形的对角线的长度为( A )
(A) 3,11; (B) 3, 11; (C) 3,10; (D) 2,11.
7. 设L1与L2是包含原点在内的两条同向闭曲线,L2在L1的内部,若已知??(k为常数),则有??2xdx?ydy( D )
L1x2?y22xdx?ydy?kL2x2?y2(A) 等于k; (B) 等于?k; (C) 大于k; (D) 不一定等于k,与L2的形状有关. 8. 设
?axnn?0?n在x?1处收敛,则
?n?1(x?1)n?0?ann在x?0处( D )
二、设f(x)?limx2n?1?ax2?bxx2n?1n??n??(n?N),试确定a、b的值,使limf(x)与limf(x)都存在.
x?1x??1解:当|x|?1时,limx2n?limx2n?1?0,故f(x)?ax2?bx;
n??当|x|?1时,f(x)?1 xx??1??1x??1,?x,??f(x)??ax2?bx,?1?x?1,?1?,x?1,x??limf(x)??1,x??1?limf(x)?a?b,a?b?1
x?1?limf(x)?a?b,x?1?limf(x)?1,a?b?1a?0,b?1。
三、设F(x)是f(x)的一个原函数,且F(0)?1,F(x)f(x)?cos2x,求
??0|f(x)|dx.
解:F?(x)?f(x),F(x)F?(x)?cos2x,?F(x)F?(x)dx??cos2xdx
F2(x)?sin2x?C,由F(0)?1知C?1,F(x)?1?sin2x?|cosx?sinx|,
|cos2x||cos2x?sin2x||f(x)|???|cosx?sinx|
|F(x)||cosx?sinx|???00|f(x)|dx??4(cosx?sinx)dx???(sinx?cosx)dx?(2?1)?(1?2)?22.
4?四、设??{(x,y,z)?R3|?a2?x2?y2?z?0,a?0},S为?的边界曲面外侧,计算
I???Saxdydz?2(x?a)ydzdxx?y?z?1222
?x2?y2?a2解:S1:z??a?x?y(下侧),S2:?(上侧),Qz?0?222??S2?0,
?? ???
乙?????SS1??????S2S1??axdydz?2(x?a)dzdx?????????22a?1S1a?1?S2?S1?S2111a3a2?1a2ò???1axdydz?2(x?a)ydzdx?S1?S2?a?2(x?a)?dV ????1?1432?a4?(3a?2x)dV?3adV????a? ??????222223a?1?a?1?a?1a?111
五、已知x0?1,x1?111,x2?3,…,xn?1?3,…. x?4x1?4xn?430求证:(1)数列{xn}收敛;(2){xn}的极限值a是方程x4?4x?1?0的唯一正根.
33xn?xn11?1解一:(1)Q0?xn?1,xn?1?xn?3 ?3?33xn?4xn?1?4(xn?4)(xn?1?4)?22xn?xn?1xn?xnxn?1?xn?142nn?3xn?xn?116??3??3????xn?1?xn?2?L???x1?x0 ?16??16?n2n4?3??3?1????1???; 又Q5?16??16?5???3????收敛,??xn?1?xn收敛, n?0?16?n?0??(xn?1?xn)收敛,又因Sn?xn?1?x0,故?xn?收敛。
n?0(2)令limxn?a,Q0?xn?1,Qa?0,且a?n??1,a4?4a?1?0,即a是3a?4x4?4x?1?0的根,令f(x)?x4?4x?1,x?(0,??),f?(x)?4x3?4?0,f(0)??1,
x???limf(x)???,故f(x)?0根唯一。
解二:由已知x0?1,x1?111?0.2495…,x3?30.2490…,?0.2,x2?3x?4x1?4x2?430由此可见,x0?x2,x1?x3 (用归纳法证明偶数项单调减少,奇数项单调增加)。
设x2n?2?x2n,x2n?1?x2n?1。 x2n?1x32n?1?4?1x32n?1?4?x2n?2, x2n?1?11?3?x2n?3 x?4x2n?2?432n由0?xn?1知?x2n?、?x2n?1?收敛,令limx2n?a,limx2n?1?b;
n??n??由0?x2n?1,0?x2n?1?1,知0?a?1,0?b?1。 对x2n?13x2n?1?4两边取极限得a?13,ab?4a?1 ① b3?4对x2n?1?11两边取极限得b?3,a3b?4b?1 ② 3x2n?4a?4由①—②得ab(b2?a2)?4(a?b)?0,解得a?b?0
由a?b知?xn?收敛,且为方程x4?4x?1?0的根(再证唯一性)。