绝密 ★ 启用前
【最后十套】2019届高考名校考前提分仿真卷
理科数学答案(八)
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】
1?2i?1?2i???2?i??5i?2?i???2?i???2?i??5??i,故选C. 2.【答案】C
【解析】∵ln?x?1??0,解得x?0,∴M??xx?0?, 又∵N??x?2?x?2?,∴MN??0,2?.故选C.
3.【答案】A
【解析】函数y?x2?lnx是偶函数,排除选项B、C, 当x?1e时,y?1e2?1?0,x?0时,函数是增函数,排除D.故选A. 4.【答案】C
【解析】∵a?2b??7,1?,∴??m?6?7,得m?n?1,∴?3?2n?1mn?1.故选C.
5.【答案】A
【解析】由表可知:a?30,b?15,c?45,d?10,n?100, 则K2?100??30?10?15?45?244?55?75?25?3.030?3.841,
故没有95%把握认为使用哪款手机与性别有关,故选A. 6.【答案】C
【解析】由题意可设双曲线C的右焦点F?c,0?,渐进线的方程为y??bax,
可得d?bc?b?2a,可得c?a2?b2?5aa2?b2,可得离心率e?ca?5,故选C. 7.【答案】B
【解析】由正弦定理可得:
bcsinB?sinC,
即
bc?sinBsinC?sin2CsinC?2sinCcosCsinC?2cosC?273?cosC?73, ∴cos2C?2cos2C?1?2?79?1?59,故选B.
8.【答案】B 【解析】由s2??x1?x?2??x2?x?2??????xn?x?2n
2?x1?x22?????x2n?2?x1?x2?????xn?x?nx2nx21?x22?????x2n?2nx2?nx2?x21?x22?????x2?nn?x2n,
2循环退出时i?11,知x2???A?222?i?1??.∴B?A1?A2?????A10,
故程序框图①中要补充的语句是B?B?A2i.故选B. 9.【答案】B
【解析】在图1中连接DE,EC,
∵AB?BC?CD?DA?AC?BD,得△DEC为等腰三角形,
设空间四边形ABCD的边长为2,即AB?BC?CD?DA?AC?BD?2, 在△DEC中,DE?EC?3,CF?1,得EF?2.
图1
图2
在图2取AD的中点M,连接MF、EM,∵E、F分别是AB、CD的中点, ∴MF?1,EM?1,?EFM是异面直线AC与EF所成的角. 222在△EMF中可由余弦定理得cos?EFM?FE?MF?ME?2?2?1?12FE?MF?22?22, ∴?EFM?45?,即异面直线所成的角为45?.故选B. 10.【答案】C
【解析】当x?ππ4时,wx?4?π4w?π4,当x?0,wx?ππ4?4,
∵在???0,π?4??只有一条对称轴,可知π2?π4w?π4?3π2,解得w??1,5?,故选C.
11.【答案】B
∵点Fx2y2【解析】1,F2分别为椭圆C:9?5?1的左、右焦点;
即F1??2,0?,F2?2,0?,a2?9,b2?5,c2?4,c?2, 设P?x0,y0?,PF1???2?x0,?y0?,PF2??2?x0,?y0?,
由PF1?PF2?m可得x02?y02?m?4,
又∵P在椭圆上,即x2209?y05?1,∴x29m?90?4, 要使得PFm成立的点恰好是4个,则0?9m?91?PF2?4?9,解得1?m?5,
∴m的值可以是3.故选B. 12.【答案】C
【解析】∵f?x??2x2x?1,∴当x?0时,f?x??0,当x?0时,f?x??2?2, ?1?x?1?2?1??4由0?x?1,∴0?f?x??1,故0?f?x??1,
又∵g?x??ax?5?2a?a?0?,且g?0??5?2a,g?1??5?a.故5?2a?g?x??5?a. ∵对于任意x1??0,1?,总存在x0??0,1?,使得g?x0??f?x1?成立, ∴f?x?在?0,1?的值域是g?x?在?0,1?的值域的子集,∴须满足??5?2a?0?5?a?1,
∴52?a?4,a的取值范围是?5??2,4???,故选C.
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分. 13.【答案】8
?x?y?1?【解析】画出不等式组?0?2x?y?0表示的平面区域,如图阴影部分所示,
??x?2
由图形知,当目标函数z?2x?3y过点A时,z取得最小值;
由??x?y?1?0?2x?y?0,求得A?1,2?;∴z?2x?3y的最小值是2?1?3?2?8.故答案为8.
14.【答案】2x?y?1?0 【解析】∵y?x?1x?1,∴y???2?x?1?2, 当x?3时,y'??12,即曲线y?x?11x?1在点?3,2?处的切线斜率为?2,
∴与曲线y?x?1x?1在点?3,2?处的切线垂直的直线的斜率为2, ∵直线过点?0,1?,∴所求直线方程为y?1?2x,即2x?y?1?0.故答案为2x?y?1?0. 15.【答案】?1
【解析】∵sin??cos?sin??cos?tan?11?3cos2??sin2??4cos2??tan2??4?4,∴tan??2, 又tan??????tan??tan?1?tan?tan??2?tan?1?2tan??13,解得tan???1.故答案为?1.
16.【答案】34π
【解析】由题意,在三棱锥D?ABC中,CD?底面ABC,AC?BC,AB?BD?5,BC?4,可得AD?CD?52?42?3,
32?422故三棱锥D?ABC的外接球的半径?32R?2?342,则其表面积为4π???34???2???34π.?
三、解答题:解答应写出文字说明、证明过程或演算步骤. n17.【答案】(1)a2n?2n?n?N*?;(2)S?1?n?n???2???1.
【解析】(1)设等比数列?an?的公比为q,
∵a1,a2,a3?2成等差数列,∴2a2?a1??a3?2??2??a3?2??a3,
∴q?a3?2?an?1nan?a1q?2n?N*?. 2?nn(2)∵b1?1n?a?2log1??????2log1???1?2an?22n??2???2n?1, n?22∴S?1???1????1?3???1?n?n???2?1??????2???3???????5???????????2???????2????2n?1??
??????2?1????2?1?2?2?????1?3?2?????????1???2??????1?3?5??????2n?1????? 1??2?1??1?n?????2??????n???1??2n?1???n?n2??1?1?12??2???1?n?N*?.
218.【答案】(1)1.29%;(2)(i)y??21.3x?14.4,(ii)见解析.
【解析】(1)由已知,单个“南澳牡蛎”质量?~N?32,16?,则??32,??4, 由正态分布的对称性可知,
P???20??12??1?P?20???44????12??1?P???3??????3?????12?1?0.9974??0.0013, 设购买10只该基地的“南澳牡蛎”,其中质量小于20g的牡蛎为X只,故X~B?10,0.0013?,故
P?X?1??1?P?X?0??1??1?0.0013?10?1?0.9871?0.0129,
∴这10只“南澳牡蛎”中,会买到质量小于20g的牡蛎的可能性仅为1.29%. 77(2)(i)由t?2.5,y?38.9,
??t2i?t??yi?y??81.0,?3.8,
i?1??ti?t?i?1有b???7i?1?ti?t??yi?y??7?81.03.8?21.3,且a??y?bx??38.9?21.3?2.5??14.4, i?1?ti?t?2∴模型②中y关于x的回归方程为y??21.3x?14.4. (ii)由表格中的数据,有182.4?79.2,即
182.42?72i?1?yi?y??79.2?72模型①的R小于模型②,
i?1?yi?y?说明回归模型②刻画的拟合效果更好.
当x?16时,模型②的收益增量的预测值为y??21.3?16?14.4?21.3?4?14.4?70.8(万元),
这个结果比模型①的预测精度更高、更可靠. 19.【答案】(1)见解析;(2)15.
【解析】(1)∵四边形ABCD为菱形,?BAD?120?,连结AC,则△ACD为等边三角形,
又∵M为CD中点,∴AM?CD,由CD∥AB,∴AM?AB, ∵AA1?底面ABCD,AM?底面ABCD,∴AM?AA1, 又∵ABAA1?A,∴AM?平面AA1B1B.
(2)∵四边形ABCD为菱形,?BAD?120?,AB?AA1?2A1B1?2, ∴DM?1,AM?3,∴?AMD??BAM?90?, 又∵AA1?底面ABCD,
分别以AB,AM,AA1为x轴、y轴、z轴,建立如图所示的空间直角坐标系A?xyz,
A2,0,0?、D??1,3,0?、D?1,3?1?0,0,2?、B?1????22,2??,
?∴DD?131???2,?,2???,BD??3,3,0,A?2???1B??2,0,?2?, 设平面A1BD的一个法向量n??x,y,z?,
则有???n?BD?0?????3x?3y?0?y?3x?3z,令x?1,则n?1,3,1,
??n?A1B?0??2x?2z?0??∴直线DD1与平面A1BD所成角?的正弦值sin??cosn,DD1?n?DD1n?DD?115. 20.【答案】(1)y2?2x;(2)
?2?1,???.
【解析】(1)设点P?x,y?,则Q??2,y?,∴OP??x,y?,OQ???2,y?. ∵OP?OQ?0,∴OP?OQ??2x?y2?0,即y2?2x.
(2)设A?x1,y1?,B?x2,y2?,D?x3,y3?,直线BD与x轴交点为E,直线AB与内切圆的切点为T.
设直线AM的方程为y?k???x?1??2??,则联立方程组??y?k???x?1??得?kx??k?2?x?k22?222?0, ?y2?2x4∴x11x2?4且0?x1y1?x2,∴x1?2?x2,∴直线AN的方程为y?1?x?1?x1??, 1??2?2与方程y2?2x联立得y2x2??1?11??y21?2x21?2x1?2??x?4y21?0,
化简得2xx2??21?111??2x1?2??x?2x1?0,解得x?4x或x?x1.
1∵x3?14x?x2,∴BD?x轴, 1设△MBD的内切圆圆心为H,则点H在x轴上且HT?AB. 2∴S?1???x?1??2y△MBD的周长2???x1?△MBD22,且22?2?2?2???y2?2y2, ∴S△MBD?1?2??2??x1?2?y2?1?1?2??2?2y2??r???x2???2y2, ??2???2?2???1?∴r??x2?2??y22?1?1,
y?x1?212??2???y?11?2?2x12?y2?1?22x?1122?2?2?1?x1?2?2????x1?2?2?x?2?2令t?x?12,则t?1,∴r?121在区间?1,???上单调递增,
2t?1?11t2?t则r?12?1?2?1,即r的取值范围为
?2?1,???.
21.【答案】(1)g?x?的单调递增区间为?0,1?,单调递减区间为?1,???;(2)见解析;(3)0?a?e. 【解析】(1)g??x??1?1x?2x???2x?1??x?1?x,
当x??0,1?时,g??x??0,g?x?递增,当x??1,???时,g??x??0,g?x?递减, 故g?x?的单调递增区间为?0,1?,单调递减区间为?1,???.
(2)x?0是f?x?的一个零点,当x?0时,由f?x??0得,a?exex?x?1?x?F?x?,F??x??x2, 当x????,0?时,F?x?递减且F?x??0,
当x?0时,F?x??0,且x??0,1?时,F?x?递减, 当x??1,???时,F?x?递增,故F?x?min?F?1??e,
大致图像如图,
∴当0?a?e时,f?x?有1个零点;当a?e或a?0时,f?x?有2个零点; 当a?e时,f?x?有3个零点.
(3)h?x??f?x??ag?x??xex?alnx?ax?a?e,
h??x???x?1?ex?a?x?1???x?1???a?x?ex?x??,a?0,
设h??x??0的根为x?a0,即有ex0x,可得x0?lna?lnx0, 0当x??0,x0?时,h??x??0,h?x?递减,当x??x0,???时,h??x??0,h?x?递增, h?x?0min?h?x0??x0ex?alnxa0?ax0?a?e?x0x?a?x0?lna??ax0?a?e?e?alna?0, 0∴0?a?e.
请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.【答案】(1)?x?2?2??y?1?2?9;(2)y?34x和x?0. 【解析】(1)将??x??cos??y??sin?代入曲线C极坐标方程得:
曲线C的直角坐标方程为x2?y2?4?4x?2y,即?x?2?2??y?1?2?9. (2)将直线l的参数方程代入曲线方程:?tcos??2?2??tsin??1?2?9, 整理得t2??4cos??2sin??t?4?0,
设点A,B对应的参数为t1,t2,解得t1?t2?4cos??2sin?,t1t2??4, 则AB?t1?t2??t21?t2??4t1t2??4cos??2sin??2?16?25?3cos2??4sin?cos??0,
∵0???π,∴??π33和tan??,∴直线l的普通方程为y?x和x?0. 2444?(2)?m0?m?2?. ?;3??23.【答案】(1)?x0?x??1?2?3x,x??2?1??x?1, 【解析】(1)当m?1时,f?x??x?1?2x?1,∴f?x???x,2?x?1?3x?2,???4?f?x??2即求不同区间对应解集,∴f?x??2的解集为?x0?x??.
3??(2)由题意,f?x??3?x对任意的x??0,1?恒成立, 即x?m?3?x?2x?1对任意的x??0,1?恒成立, 1?x?2,0?x???2令g?x??3?x?2x?1??,
1?4?3x,?x?1??2∴函数y?x?m的图象应该恒在g?x?的下方,数形结合可得0?m?2.