好文档 - 专业文书写作范文服务资料分享网站

2020高考数学总复习:三角函数

天下 分享 时间: 加入收藏 我要投稿 点赞

高考数学总复习第七讲:三角函数

一、三角函数的图象和性质

一、教学目的:

1.使学生熟知三角函数的基本性质,并能以此为依据研究一些

解析式为三角式的函数的性质,切实掌握判定目标函数的奇偶性,

确定其单调区间及周期的方法。

2.会求函数 y=Asin(ωx+φ)的周期,或者经过简单恒等变形便

可转化为上述函数的三角函数的周期;

3.了解正弦函数、余弦函数、正切函数、余切函数的图象的画

法,会用“五点法”画四函数及 y=Asin(ωx+φ)的简图,并能解决

与正弦曲线有关的实际问题。

考试内容:用单位圆中的线段表示三角函数值;正、余弦与正、

余切函数的图象和性质;函数 y=Asin(ωx+φ)的图象。

二、基本三角函数的图象

y=sinx

定义域 R

y=cosx R

y=tanx

y=cotx

?

{x | x ? k? ?

,x?R}{x|x≠k2 π,

x∈R}

值域

[-1,1] [-1,1] 2π 增区间

2

R R

最小正周

周期性 最小正周期 2π 单 调 区 增区间 间

最小正周期 最小正周期π

增区间

期π 减区间 (k π, k

??? ? [2kπ-π,2k[2k? ? ,k? ? ] (k? ? ,k? ? )

k∈z

减区间

2 2 2 2

π] π+π)

3? 减区间

,k??? 2 [2k? ? 2 ]

2 [2k π, 2k π

+π]

点 最大值点

(2kπ,1)

最值点 最 k∈z

?

值 无 无

最小值点

,?1)

(2k? ?

(2k? ? ,1) 2

最小值点 (2kπ+π, -1)

(k? ? ,0)

2

?

?

2

对 称 中 (kπ,0)

? k2

( ,0)

k?,0)( 2

k∈z

?

x ? k? ?

2

对称轴 k∈z

x=kπ 无 无

三、(一)性质——单调性、奇偶性、周期性(注意书写格式

及对角的讨论)

例 1.用定义证明:f(x)=tgx 在 (? ? , ? ) 递增。

2 2

例 2.比较下列各组三角函数的值的大小

(1)sin194°和 cos160°; (2) ctg (? 43 ? ) 和 ctg (? 74 ? )

15 19

(3) sin(sin 3? ) 和 sin(cos 3? ) ;

8 8

(4)tg1,tg2 和 tg3;

(1)>(2)<(3)>(4)tg2

化为同名、角在同一单调区间内的函数,进而利用增减性比较函

数值大小。

例 3.求下列各函数的单调区间

(1) y ? ?2 cos( x ? ? ) ;

2

3

(2) y ? 1 ? sin 2 x ? 3 cos 2 x (减区间)

(3) y ? ? sin 2 x ? sin x ;

(4) y ? log cos( x ? ? ) (增区间)

1 ?

3 4

(1 )4k π-2 π/3≤x ≤4k π+4 π/3 (增); 4k π+4 π/3 ≤x≤4k π

+10π/3(减),k∈z

(2) [k? ? ? ,k? ? 5? ],k ? z

12

12

( 3 ) [2k π - π /2 , 2k π + π /6] 与 [2k π + π /2 , 2k π +5 π /6]

(增);

(4)6kπ-3π/4≤x<6kπ+3π/4

[2kπ-π/6,2kπ+π/2]与[2kπ+5π/6,2kπ+3π/2](减); k ∈

2020高考数学总复习:三角函数

高考数学总复习第七讲:三角函数一、三角函数的图象和性质一、教学目的:1.使学生熟知三角函数的基本性质,并能以此为依据研究一些解析式为三角式的函数的性质,切实掌握判定目标函数的奇偶性,确定其单调区间及周期的方法。
推荐度:
点击下载文档文档为doc格式
2xri994yzv1xep036fj71ujtp7zr5k019fm
领取福利

微信扫码领取福利

微信扫码分享