微积分初步形成性考核作业(一)解答
————函数,极限和连续
一、填空题(每小题2分,共20分) 1.函数f(x)?1的定义域是 .
ln(x?2), {解:{ln(x?2)?0x?2?0x?3x?2
所以函数f(x)?1的定义域是(2,3)?(3,??)
ln(x?2)2.函数f(x)?15?x的定义域是 .
解:5?x?0,x?5
所以函数f(x)?15?x的定义域是(??,5)
3.函数f(x)?1?4?x2的定义域是 .
ln(x?2)?ln(x?2)?0?x??11??x?2?0x??2f(x)??4?x2的定义域是(?2,?1)?(?1,2] 解: , 所以函数??ln(x?2)??2?x?2?4?x2?0??4.函数f(x?1)?x2?2x?7,则f(x)? 22 2 .
2解:f(x?1)?x?2x?7?x?2x?1?6?(x?1)?6 所以f(x)?x?6
2?x2?25.函数f(x)??x?ex?0,则f(0)? . x?0解:f(0)?0?2?2
26.函数f(x?1)?x?2x,则f(x)? .
222解:f(x?1)?x?2x?x?2x?1?1?(x?1)?1,f(x)?x?1
2x2?2x?37.函数y?的间断点是 .
x?1解:因为当x?1?0,即x??1时函数无意义
x2?2x?3 所以函数y?的间断点是x??1
x?11?limxx??1x8.limxsinx??1? . xsin
解:limxsinx??1x?1
9.若
limsin4x?2,则k? .
x?0sinkx1
sin4xsin4x44解: 因为lim?lim4x??2
x?0sinkxkx?0sinkxkkxsin3x?2,则k? . 10.若limx?0kxsim3x3sim3x3?lim??2 解:因为limx?0kxkx?03xk二、单项选择题(每小题2分,共24分)
所以k?2
所以k?3 2e?x?ex1.设函数y?,则该函数是( ).
2A.奇函数 B.偶函数 C.非奇非偶函数 D.既奇又偶函数
e?(?x)?e?xex?e?x??y 解:因为y(?x)?222.设函数y?x2sinx,则该函数是( ).
e?x?ex 所以函数y?是偶函数。故应选B
2A.奇函数 B.偶函数 C.非奇非偶函数 D.既奇又偶函数 解:因为y(?x)?(?x)2sin(?x)??x2sinx??y
所以函数y?x2sinx是奇函数。故应选A
2x?2?x3.函数f(x)?x的图形是关于( )对称.
2A.y?x B.x轴 C.y轴 D.坐标原点
2?x?2?(?x)2?x?2x2x?2?x??x??f(x) 所以函数f(x)?x解:因为f(?x)?(?x)?是奇函数
2222x?2?x 从而函数f(x)?x的图形是关于坐标原点对称的 因此应选D
24.下列函数中为奇函数是(
).
2A.xsinx B.lnx C.ln(x?1?x2) D.x?x 解:应选C
1?ln(x?5)的定义域为( ). x?4A.x??5 B.x??4 C.x??5且x?0 D.x??5且x??4
5.函数y?解:??x?4?0?x??4,?,所以应选D
?x?5?0?x??51的定义域是( ).
ln(x?1)C.(0,2)?(2,??) D.(1,2)?(2,??)
2
6.函数f(x)?A. (1,??) B.(0,1)?(1,??)
解:??ln(x?1)?0?x?1?0,?x?2,
??x?1函数f(x)?1ln(x?1)的定义域是(1,2)?(2,??),故应选D
7.设f(x?1)?x2?1,则f(x)?( )
A.x(x?1) B.x2 C.x(x?2) D.(x?2)(x?1) 解:f(x?1)?x2?1?(x?1)(x?1)?(x?1)[(x?1)?2] f(x)?x(x?2),故应选C
8.下列各函数对中,(
)中的两个函数相等.
A.f(x)?(x)2,g(x)?x B.f(x)?x2,g(x)?x
C.f(x)?lnx2,g(x)?2lnx D.f(x)?lnx3,g(x)?3lnx 解:两个函数相等必须满足①定义域相同②函数表达式相同,所以应选D
9.当x?0时,下列变量中为无穷小量的是( ). A.
1sinxxx B.x C.ln(1?x) D.x2 解:因为limx?0ln(1?x)?0,所以当x?0时,ln(1?x)为无穷小量,所以应选C
10.当k?( )时,函数f(x)???x2?1,x?0?k,x?0,在x?0处连续.
A.0 B.1 C.2 D.?1 解:因为limf(x)?lim(x2x?0x?0?1)?1,f(0)?k
若函数f(x)???x2?1,x?0,,在x?0处连续,则f(0)?limf(x),因此k??kx?0x?01。故应选B
11.当k?( )时,函数f(x)???ex?2,x?0?k,x?0在x?0处连续.
A.0 B.1 C.2 D.3 解:k?f(0)?limf(x)?lim(exx?0x?0?2)?3,所以应选D
12.函数f(x)?x?3x2?3x?2的间断点是( ) A.x?1,x?2
B.x?3
C.x?1,x?2,x?3
D.无间断点
解:当x?1,x?2时分母为零,因此x?1,x?2是间断点,故应选A 三、解答题(每小题7分,共56分)
⒈计算极限limx2?3x?2x?2x2?4.
3
解:limx2?3x?2(x?1)(x?2)x?x?2x2?4?limx?2(x?2)(x?2)?lim1x?2x?2?14
2.计算极限limx2?5x?6x?1x2?1 解:limx2?5x?6(x?1)(x?6)x?x?1x2?1?limx?1(x?1)(x?1)?lim6x?1x?1?72 3.limx2?9x?3x2?2x?3
解:limx2?9(x?3)(x?3)x?36x?3x2?2x?3?limx?3(x?1)(x?3)?limx?3x?1?4?32 4.计算极限limx2?6x?8x?4x2?5x?4
解:limx2?6x?8x?4x2?5x?4?lim(x?2)(x?4)x?4(x?1)(x?4)?limx?2x?4x?1?23 5.计算极限limx2?6x?8x?2x2?5x?6.
解:limx2?6x?8x?2x2?5x?6?lim(x?2)(x?4)x?4x?2(x?2)(x?3)?limx?2x?3?2 6.计算极限lim1?x?1x?0x. 解:lim1?x?1(1?x?1)(1?x?x?0x?lim1)x?0x(1?x?1)?lim?xx?0x(1?x?1) ??lim11x?01?x?1??2 7.计算极限lim1?x?1x?0sin4x
解:lim1?x?1sin4x?lim(1?x?1)(1?x?1)x?0x?0sin4x(1?x?1) ?lim?xx?0sin4x(1?x?1)??1114limx?0sin4x??84x(1?x?1)4
8.计算极限limx?0sin4xx?4?2.
解:limx?0sin4xx?4?2?limx?0sin4x(x?4?2)(x?4?2)(x?4?2)
?lim
sin4x(x?4?2)sim4x?4lim[(x?4?2)?16
x?0x?0x4x微积分初步形成性考核作业(二)解答(除选择题)
————导数、微分及应用
一、填空题(每小题2分,共20分) 1.曲线f(x)?解:f?(x)?x?1在(1,2)点的斜率是 .
,斜率k?f?(1)?12x1 22.曲线f(x)?ex在(0,1)点的切线方程是 . 解:f?(x)?ex ,斜率k?f?(0)?e0?1
所以曲线f(x)?ex在(0,1)点的切线方程是:y?x?1 3.曲线y?x?12在点(1,1)处的切线方程是 33 .
1?1?解:y???x2,斜率k?y?x?1??x222 所以曲线y?x?12??x?11 21(x?1),即:x?2y?3?0 2在点(1,1)处的切线方程是:y?1??4.(2x)?? . 解:(2)??2 xx?12x ln2? 2xln22x
5.若y = x (x – 1)(x – 2)(x – 3),则y?(0) = 6.已知
.解:y?(0)?(?1)(?2)(?3)??6
f(x)?x3?3x,则f?(3)=
2x .解:f?(x)?3x?3ln3,f?(3)?27?27ln3
7.已知f(x)?lnx,则f??(x)= .解:f?(x)??x8.若f(x)?xe,则f??(0)? 11,f??(x)??2 xx .
解:f?(x)?e
?x?xe?x,f??(x)??e?x?(e?x?xe?x)??2e?x?xe?x, f??(0)??2
5