1.闪烁灯
1.
实验任务
如图4.1.1所示:在P1.0端口上接一个发光二极管L1,使L1在不停地一亮一灭,一亮一灭的时间间隔为0.2秒。2.
电路原理图
图4.1.1
3.
系统板上硬件连线
把“单片机系统”区域中的P1.0端口用导线连接到“八路发光二极管指示模块”区域中的L1端口上。4.
程序设计内容
(1).延时程序的设计方法
作为单片机的指令的执行的时间是很短,数量大微秒级,因此,我们要求的闪烁时间间隔为0.2秒,相对于微秒来说,相差太大,所以我们在执行某一指令时,插入延时程序,来达到我们的要求,但这样的延时程序是如何设计呢?下面具体介绍其原理:
如图4.1.1所示的石英晶体为12MHz,因此,1个机器周期为1微秒机器周期微秒
MOVR6,#202个机器周期D1:MOVR7,#2482个机器周期
DJNZR7,$2个机器周期DJNZR6,D12个机器周期
222×2482×20=40
2+2×248=49820×
49810002
因此,上面的延时程序时间为10.002ms。
由以上可知,当R6=10、R7=248时,延时5ms,R6=20、R7=248时,延时10ms,以此为基本的计时单位。如本实验要求0.2秒=200ms,10ms×R5=200ms,则R5=20,延时子程序如下:
DELAY:MOVR5,#20D1:MOVR6,#20D2:MOVR7,#248DJNZR7,$DJNZR6,D2DJNZR5,D1RET
(2).输出控制
如图1所示,当P1.0端口输出高电平,即P1.0=1时,根据发光二极管的单向导电性可知,这时发光二极管L1熄灭;当P1.0端口输出低电平,即P1.0=0时,发光二极管L1亮;我们可以使用SETBP1.0指令使P1.0端口输出高电平,使用CLRP1.0指令使P1.0端口输出低电平。
5.程序框图
如图4.1.2所
示
图4.1.2
6.汇编源程序ORG0
START:CLRP1.0LCALLDELAYSETBP1.0LCALLDELAYLJMPSTART
DELAY:MOVR5,#20;延时子程序,延时0.2秒D1:MOVR6,#20D2:MOVR7,#248DJNZR7,$DJNZR6,D2DJNZR5,D1RETEND
7.C语言源程序
#include
voiddelay02s(void)//延时0.2秒子程序{
unsignedchari,j,k;for(i=20;i>0;i--)for(j=20;j>0;j--)for(k=248;k>0;k--);}
voidmain(void){
while(1){L1=0;
delay02s();
L1=1;
delay02s();}}
2.模拟开关灯
1.实验任务
如图4.2.1所示,监视开关K1(接在P3.0端口上),用发光二极管L1(接在单片机P1.0端口上)显示开关状态,如果开关合上,L1亮,开关打开,L1熄灭。2.电路原理图
图4.2.1
3.系统板上硬件连线
(1).把“单片机系统”区域中的P1.0端口用导线连接到“八路发光二极管指示模
块”区域中的L1端口上;(2).把“单片机系统”区域中的P3.0端口用导线连接到“四路拨动开关”区域中的
K1端口上;
4.程序设计内容
(1).开关状态的检测过程
单片机对开关状态的检测相对于单片机来说,是从单片机的P3.0端口输入信号,而输入的信号只有高电平和低电平两种,当拨开开关K1拨上去,即输入高电平,相当开关断开,当拨动开关K1拨下去,即输入低电平,相当开关闭合。单片机可以采用JBBIT,REL或者是JNBBIT,REL指令来完成对开关状态的检测即可。
(2).输出控制
如图3所示,当P1.0端口输出高电平,即P1.0=1时,根据发光二极管的单向导电性可知,这时发光二极管L1熄灭;当P1.0端口输出低电平,即P1.0=0时,发光二极管L1亮;我们可以使用SETBP1.0指令使P1.0端口输出高电平,使用CLRP1.0指令使P1.0端口输出低电平。5.程序框图
图4.2.2
6.汇编源程序ORG00HSTART:JBP3.0,LIGCLRP1.0SJMPSTARTLIG:SETBP1.0SJMPSTARTEND
7.C语言源程序
#include