.
Y~b(5,e?2),即其分布律为
kP(Y?k)?C5(e?2)k(1?e?2)5?k,k?0,1,2,3,4,5P(Y?1)?1?P(Y?0)?1?(1?e)?0.5167?25
20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X服
从N(40,102);第二条路程较长,但阻塞少,所需时间X服从N(50,42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些? 【解】(1) 若走第一条路,X~N(40,102),则
?x?4060?40?P(X?60)?P?????(2)?0.97727
10??10若走第二条路,X~N(50,42),则
?X?5060?50?P(X?60)?P?????(2.5)?0.9938++
4??4故走第二条路乘上火车的把握大些. (2) 若X~N(40,102),则
?X?4045?40?P(X?45)?P?????(0.5)?0.6915
10??10若X~N(50,42),则
?X?5045?50?P(X?45)?P?????(?1.25)
44?? ?1??(1.25)?0.1056
故走第一条路乘上火车的把握大些. 21.设X~N(3,22), (1) 求P{2 4 (2) 确定c使P{X>c}=P{X≤c}. . 【解】(1) P(2?X?5)?P??2?3X?35?3???? 22??2?1??1???(1)???????(1)?1???? ?2??2? ?0.8413?1?0.6915?0.5328??4?3X?310?3?P(?4?X?10)?P???? 22??2 ????7??7????????0.9996 2???2?P(|X|?2)?P(X?2)?P(X??2) ?X?32?3??X?3?2?3??P???P????2?2??2?2?1??5??1??5? ?1???????????????1???? ?2??2??2??2??0.6915?1?0.9938?0.6977P(X?3)?P((2) c=3 X?33-3?)?1??(0)?0.5 2222.由某机器生产的螺栓长度(cm)X~N(10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率. 【解】P(|X?10.05|?0.12)?P??X?10.050.12? ??0.06??0.06 ?1??(2)??(?2)?2[1??(2)] ?0.045623.一工厂生产的电子管寿命X(小时)服从正态分布N(160,σ2),若要求P{120<X≤ 200}≥0.8,允许σ最大不超过多少? 【解】P(120?X?200)?P??120?160X?160200?160???? ??????40???40??40????2???????1?0.8 ????????? ??? . 故 24.设随机变量X分布函数为 ??40?31.25 1.29?A?Be?xt,x?0,F(x)=?(??0), x?0.?0,(1) 求常数A,B; (2) 求P{X≤2},P{X>3}; (3) 求分布密度f(x). limF(x)?1??A?1?x???【解】(1)由?得? limF(x)?limF(x)?B??1?x?0??x?0?(2) P(X?2)?F(2)?1?e?2? ?3? P(X?3)?1?F(3)?1?(1?e)?e?3? ??e??x,x?0(3) f(x)?F?(x)?? x?0?0,25.设随机变量X的概率密度为 ?x,?f(x)=?2?x,?0,?0?x?1,1?x?2, 其他.求X的分布函数F(x),并画出f(x)及F(x). 【解】当x<0时F(x)=0 当0≤x<1时F(x)?x?x??f(t)dt??0??f(t)dt??f(t)dt 0xx2 ??tdt? 02当1≤x<2时F(x)??x??f(t)dt . ?? 0??1f(t)dt??f(t)dt??f(t)dt01x11x??tdt??(2?t)dt01x23??2x??222x2???2x?12 当x≥2时F(x)??x??f(t)dt?1 ?0,?2?x,?2故 F(x)??2??x?2x?1,?2??1,26.设随机变量X的密度函数为 (1) f(x)=ae |x|,λ>0; x?00?x?1 1?x?2x?2?bx,0?x?1,?11?x?2, (2) f(x)=?2,?x?0,其他.试确定常数a,b,并求其分布函数F(x). 【解】(1) 由 ????f(x)dx?1知1??ae?????|x|dx?2a?e??xdx?0?2a? 故 a??2 ????xe,x?0??2即密度函数为 f(x)?? ??e?xx?0??2当x≤0时F(x)?当x>0时F(x)??x??xf(x)dx??1e?xdx?e?x ??22x0????f(x)dx???2??e?xdx??x?20e??xdx ?1?故其分布函数 1??xe 2 . ?1??x1?e,x?0??2F(x)?? ?1e?x,x?0??2(2) 由1?????f(x)dx??bxdx??01211b1dx?? x222得 b=1 即X的密度函数为 0?x?1?x,?1?f(x)??2,1?x?2 ?x其他??0,当x≤0时F(x)=0 当0 0x?x2xdx? 2x??当1≤x<2时F(x)? ??f(x)dx??0dx??xdx????001x11dx 2x31? 2x当x≥2时F(x)=1 故其分布函数为 ?0,?2?x,?F(x)??2?3?1,?2x?1,?27.求标准正态分布的上?分位点, (1)?=0.01,求z?; (2)?=0.003,求z?,z?/2. x?00?x?1 1?x?2x?2