第二十九次课 20机械类2、3班112(141)人 ① 齐次方程的特点和求解方法
② 可降阶的高阶微分方程的特点和求解方法
------------------------------------------- ① 齐次方程的求解
② 可降阶的高阶微分方程的解
一、y(n)?f?x?型的微分方程 二、F(x,y?,y??)?0型的微分方程 三、F(y,y?,y??)?0型的微分方程
齐次方程的求解
?x??dy?y??dx????????????????dx?x??dy?y??ydydu?u,y?ux,?x?uxdxdxdux?u???u?dxdux???u??udxdudx???u??uxdudx????u??u?x?y?G?u??lnx?lnC?G???lnx?lnC?x?例、解微分方程y??
yy?tan.xx
yyydydu?tan,??????u,y?xu,?u?xxxxdxdxduu?x?u?tanudx dudx?tanuxy??dudx??tanu?x?cotudu?lnx?lnClnsinu?lnx?lnCsinu?Cxysin?Cxxy?xarcsin?Cx?2
例2、解微分方程ydx?(xy?x)dy?0.
2y2dx?(xy?x2)dy?0?dxxy?x2?dyy2????????22dxxy?xdyy???y?dy?x??????y?u,y?ux,dy?xdu?u?ydxxdxdx?1xduu2duu2?u2?ux?u?????x??dxu?1dxu?1(u?1)dudx?ux1??1?du?lnx?lnC???u??u?lnu?lnx?lnCyy?lnxC?y?xeCyxx
可降阶的高阶微分方程:
(1)对于y(n)?f?x?则通过n次积分可得到包含n个常数的通解;
(2)对于二阶微分方程F(x,y?,y??)?0,可令y??p(x),y???p?将方程降阶为
2F(x,p,p?)?0,利用一阶方程求解求得y??p(x),其中p(x)含有一个任意常数,然后
再积分一次可得到包含两个任意常数的通解.【没有y】 (3)对于二阶微分方程F(y,y?,y??)?0,可令y为自变量y??p(y),则y??(x)?p?y?dp,dy将方程降阶为F(y,p,dp)?0,求得y??p(y),其中含有一个任意常数,然后对dydx?11dy两边积分,dy?C2得到包含两个任意常数的通解. 求得x??【没有x】 p(y)p(y)(n?1)(4)对于F(y,y,y(n))?0型的n阶微分方程,可令y(n?1)?p(x)则y(n)?p?,将方
(n?1)程降阶为F(x,p,p?)?0,利用一阶方程求解求得y?p(x),其中p(x)含有一个任
意常数,然后再积分n?1次可得到包含n个任意常数的通解. 1、求微分方程y
2x2、求微分方程的通解y????e?cosx.
(5)?sin2x?x?1?的通解;
y????e2x?cosx.12xe??sinx?C1211y???(e2x??sinx?C1)dx?e2x?cosx?C1x?C2
241y??(e2x?cosx?C1x?C2)dx4C1x?212x?????e?sinx??C2x?C382y????(e2x?cosx)dx?3、求微分方程xy???y??2xy?的通解;
22x2y???y?2?2xy???y??p,y???p??x2dpdxdp?p2?2xpdxdp21dz1dp?p?2p2???p1?2?z,??2?dxxxdxpdx1dp2?11 ?p?22pdxxxdz21?z??2dxxx22dx?dx?1??z?ex???2exdx?C1??x??C1?x11?2?C?x???px?1x2?p?y??xC1?x2
?C12?x2?x2y??dx????x?C1??C1x?C12lnC1?x?C2????dx?C1?x?C1?x?24、解初值问题????1?x2?y???2xy???y|x?0?1,y?|x?0?3 ????1?x2?y???2xy???y|x?0?1,y?|x?0?3?1?x2?y???2xy?????y??p,y???p??dpdx?1?x2?dpdx?2xpdpp?2x1?x2dx?dp2xp??1?x2dxlnp?ln?1?x2??lnC1p?C1?1?x2?dydx?C1?1?x2??????y?|x?0?3???C1?3dy?3?1?x2?dx?dy??3?1?x2?dx?y?3x?x3?C2??y|x?0?1?????C2?1y?3x?x3?15、求微分方程y???21?yy?2?0的通解;
y???2dpy?2?0????y??p,y???p1?ydydp2?p?0???p?0,y?C?dy1?yp?C1e??1?ydy2?C1?y?1?2dy2?C1?y?1?dxdy?C1dx2?y?1???y?1?dy2??C1dx1?C1x?C21?yy?1?1???C1x?C2
y???f?y,y??y??p,y???p??dpp?f?y,p?dyp?dydy???y,C1????dx?x?C2dx??y,C1??1
C1x?C22dpdpdydp???pdxdydxdy
y?1?6、求微分方程yy???y??0满足初始条件y|x?0?1,y?|x?0?1的特解是 .key:2y2?x?1