好文档 - 专业文书写作范文服务资料分享网站

校本课程:常用的巧算和速算方法

天下 分享 时间: 加入收藏 我要投稿 点赞

.

*****校本课程 数学计算方法

第一讲 生活中几十乘以几十巧算方法

1.十几乘十几:

口诀:头乘头,尾加尾,尾乘尾。 例:12×14=? 解: 1×1=1 2+4=6 2×4=8 12×14=168

注:个位相乘,不够两位数要用0占位。

2.头相同,尾互补(尾相加等于10): 口诀:一个头加1后,头乘头,尾乘尾。 例:23×27=? 解:2+1=3 2×3=6 3×7=21 23×27=621

注:个位相乘,不够两位数要用0占位。

3.第一个乘数互补,另一个乘数数字相同: 口诀:一个头加1后,头乘头,尾乘尾。 例:37×44=? 解:3+1=4 4×4=16 7×4=28 37×44=1628

注:个位相乘,不够两位数要用0占位。

.

.

4.几十一乘几十一:

口诀:头乘头,头加头,尾乘尾。 例:21×41=? 解:2×4=8 2+4=6 1×1=1 21×41=861

5.11乘任意数:

口诀:首尾不动下落,中间之和下拉。 例:11×23125=? 解:2+3=5 3+1=4 1+2=3 2+5=7

2和5分别在首尾 11×23125=254375 注:和满十要进一。

6.十几乘任意数:

口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。 例:13×326=? 解:13个位是3 3×3+2=11 3×2+6=12 3×6=18 13×326=4238 注:和满十要进一。

.

.

第二讲 常用巧算速算中的思维与方法(1)

【顺逆相加】用“顺逆相加”算式可求出若干个连续数的和。

例如著名的大数学家高斯(德国)小时候就做过的“百数求和”题,可以计算为 1+2 +……+99+100

所以,1+2+3+4+……+99+100 =101×100÷2 =5050

“3+5+7+………+97+99=?

3+5+7+……+97+99=(99+3)×49÷2= 2499。

这种算法的思路,见于书籍中最早的是我国古代的《张丘建算经》。张丘建利用这一思路巧妙地解答了“有女不善织”这一名题:

“今有女子不善织,日减功,迟。初日织五尺,末日织一尺,今三十日织讫。问织几何?”

题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。她第一天织了5 尺布,最后一天织了1 尺,一共织了30 天。问她一共织了多少布?

张丘建在《算经》上给出的解法是:

“并初末日织尺数,半之,余以乘织讫日数,即得。”“答曰:二匹一丈”。 这一解法,用现代的算式表达,就是 1 匹=4 丈,1 丈=10 尺, 90 尺=9 丈=2 匹1 丈。

张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30 天所织的

.

.

布都加起来,算式就是:5+…………+1

在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个相同的数,而这一递减的数不会是个整数。若把这个式子反过来,则算式便是 :1+………………+5

此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个相同的数。同样,这一递增的相同的数,也不是一个整数。

假若把上面这两个式子相加,并在相加时,利用“对应的数相加和会相等” 这一特点,那么,就会出现下面的式子:

所以,加得的结果是6×30=180(尺)

但这妇女用30 天织的布没有180 尺,而只有180 尺布的一半。所以,这妇女30 天织的布是 180÷2=90(尺)

可见,这种解法的确是简单、巧妙和饶有趣味的。

.

.

第三讲 常用巧算速算中的思维与方法(2)

方法一:分组计算

一些看似很难计算的题目,采用“分组计算”的方法,往往可以使它很快地解答出来。 例如:

求1 到10 亿这10 亿个自然数的数字之和。

这道题是求“10 亿个自然数的数字之和”,而不是“10 亿个自然数之和”。 什么是“数字之和”?例如,求1 到12 这12 个自然数的数字之和,算式是 1+2+3+4+5+6+7+8+9+1+0+1+1+1+1+2=5l。

显然,10 亿个自然数的数字之和,如果一个一个地相加,那是极麻烦,也极费时间(很多年都难于算出结果)的。怎么办呢?我们不妨在这10 亿个自然数的前面添上一个“0”,改变数字的个数,但不会改变计算的结果。然后,将它们分组:

0 和999,999,999;1 和999,999,998; 2 和999,999,997;3 和999,999,996; 4 和999,999,995;5 和999,999, 994; ……… ………

依次类推,可知除最后一个数,1,000,000,000 以外,其他的自然数与添上的0 共10 亿个数,共可以分为5 亿组,各组数字之和都是81,如 0+9+9+9+9+9+9+9+9+9=81 1+9+9+9+9+9+9+9+9+8=81 ………………

最后的一个数1,000,000,000 不成对,它的数字之和是1。所以,此题的计算结果是

(81×500,000,000)+1 =40,500,000,000+1 =40,500,000,001

方法二:由小推大

.

校本课程:常用的巧算和速算方法

.*****校本课程数学计算方法第一讲生活中几十乘以几十巧算方法1.十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:12×14=?解:1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。2.头相同,尾互补(尾相加等于10):口诀:一
推荐度:
点击下载文档文档为doc格式
2vk7m1ijtk862m61dk4v721et5ixw1005ji
领取福利

微信扫码领取福利

微信扫码分享